ENGINEERING DESIGN REPORT

Cloghroe Development Cloghroe Cork January 2022

Contents

1.	INTRODUCTION	1
2.	ROADS	2
3.	TRAFFIC AND PEDESTRIAN MANAGEMENT	4
4.	SITE INVESTIGATION	6
	STORM WATER NETWORK	
6.	FOUL WATER NETWORK	. 13
7.	WATERMAIN NETWORK	. 16
	PUBLIC LIGHTING	
9.	FLOOD RISK ASSESSMENT	. 19
10	NZEB COMPLIANCE	. 27
11	. FIRE SAFETY	. 29
ΑF	PPENDICES	. 30

APPENDIX A - IRISH WATER PRE-CONNECTION ENQUIRY RESPONSE

APPENDIX B - IRISH WATER STATEMENT OF DESIGN ACCEPTANCE

APPENDIX C - SITE INVESTIGATION BORE LOGS

APPENDIX D - SITE INVESTIGATION TRIAL PIT LOGS

APPENDIX E - SITE INVESTIGATION INFILTRATION TEST DATA

APPENDIX F - SITE INVESTIGATION ON-SITE CBR TEST DATA

APPENDIX G - HR WALLINGFORD GREENFIELD RUNOFF ESTIMATION

1. INTRODUCTION

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

MHL Consulting Engineers have been engaged by Cloghroe Development Limited to provide design consultancy services for the civil engineering elements associated with a proposed development of 198 residential units, a 42-child creche, a retail food store, and a café, to be determined by way of the Strategic Infrastructure Application process to An Bord Pleanála. The proposed site is located along the R617 in Cloghroe and is highlighted in **Figure 1.1** below.

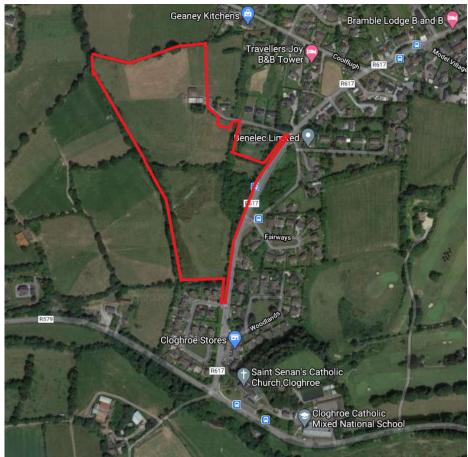


Figure 1.1: Site location

2. ROADS

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

Internal Estate Roads

The internal estate roads have been designed in accordance with the Design Manual for Urban Roads and Streets (DMURS). In general, a maximum gradient of 5% and minimum gradient of 0.6% was used for all internal estate roads. Due to the sloped nature of the site, a gradient of 8.3% was required for short sections of Estates Roads 1 and 3 in areas featuring no direct access to dwellings. The design team has ensured that the lengths of road necessitating a gradient of 8.3% were kept to a minimum.

Figure 2.1: Overall proposed estate roads with cut and fill lines (refer to MHL drawing RL1-ERO-P01)

The parameters for a design speed of 20km/h were used to produce the horizontal and vertical alignments in accordance with the standards set out in Design Manual for Urbans Roads and Streets (DMURS), as required per Objective 5.16 in the Cork City Development Plan 2015-2021. Table 4.3 in DMURS outlines the minimum requirement for horizontal and vertical curvature for a 20km/h road. The minimum value used for horizontal curvature is 11m. To produce a robust design regarding the vertical alignment it is prudent to use K-values relating to a 40km/h road, 4.1 for a crest curve and 2.6 for a sag curve. **Figure 2.1** highlights each of the

internal roads and corresponds with **Table 2.1** which highlights the maximum and minimum design parameters used.

Estate Roads Design	Max Gradient	Min Gradient	Max K	Min K	Junction Approach Gradient	Junction Approach Length
Estate Road 1	8.3%	2.4%	30.0	5.0	2.5%/5.0%	64m/165m
Estate Road 2	5.0%	2.0%	5.0	5.0	2.0%/5.0%	60m/31m
Estate Road 3	8.3%	1.9%	5.0	3.0	1.9%/5.0%	110m/47m
Estate Road 4	5.0%	3.0%	10.0	5.0	3.0%	10m
Estate Road 5	3.0%	1.6%	30.0	30.0	3.0%/1.6%	20m/43m
Estate Road 6	0.6%	0.6%	-	-	0.6%	37m
Estate Road 7	0.6%	0.6%	-	-	0.6%	35m
Estate Road 8	1.0%	1.0%	-	-	1.0%	90m
Estate Road 9	0.7%	0.7%	-	-	0.6%/0.6%	39m/39m
Estate Road 10	0.6%	0.6%	-	-	0.6%	39m
Estate Road 11	0.6%	0.6%	-	-	0.6%	22m
Estate Road 12	0.6%	0.6%	-	1	0.6%	45m

Reference Document:

Table 2.1: Internal Estate Roads Design

Design Manual for Urban Roads and Streets 2019

3. TRAFFIC AND PEDESTRIAN MANAGEMENT

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

An overview of traffic calming and pedestrian connectivity throughout the site is presented in **Figure 3.1** below. Shared surface streets with road widths of 5.0m and minimum road radii per DMURS are proposed at selected internal roads. Appropriate surface treatments, such as paving, will be used on these roads to serve as a reminder to motorists that they are in a shared space requiring low speeds. The site is very well located in terms of connectivity to pedestrian footpaths which provide a link to public transport and local services such as retail stores, the Church, the Local National School, and the Village Centre in Tower.

Figure 3.2 presents proposed public realm works on the R617 including a 2.0m footpath, 1.0m grass verge, a 2.0m cycle lane, and a 3.25m reservation for a possible future bus lane to be provided as part of CMATS (Bus Connects). An off-road bus stop including bus shelter is also being proposed. It is expected that the provision of the above public realm improvement works will urbanise the area, resulting in a reduction in traffic speed in the area which will be a road safety gain.

Figure 3.1: Traffic Calming & Pedestrian Connectivity

Figure 3.2: Proposed Pedestrian/Cycle Connectivity Improvement Measures along the R617

Currently a footpath is provided on the R617, opposite the development site, which connects as far as Blarney Village via Tower. Muskerry Golf Club is also accessible by footpath using a pedestrian entrance. It is proposed to provide a segregated footpath and cycle lane on the development side of the R617 to further enhance connectivity and create a safer environment for all road users.

Future connectivity to adjoining lands is also proposed at several locations within the site. These will be provided to ensure future connectivity to the creche, and retail element of the scheme is available.

Internally within the scheme, each developed area has multiple options of connectivity for each of the different modes of travel, maximising accessibility to the various amenities provided as part of the scheme, as set out in further detail in Landscape Architect's drawings submitted with the application. The quality of these routes has been carefully considered to ensure their viability in terms of desire lines and to ensure users will feel comfortable and safe when availing of these facilities.

A separate Statement of Consistency for "Traffic and Transportation and Associated Infrastructure" and "DMURS Compliance" is included as a part of this submittal.

A separate Traffic & Transport Assessment (TTA) report is included with this submittal for review. The TTA assesses & quantifies how the proposed development will impact upon the surrounding roads network.

4. SITE INVESTIGATION

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

As part of the design for the proposed development, comprehensive site investigations were carried out by OCB Geotechnical on the green field site in September 2020. In total, site investigation consisted of 6 No. bore holes to measure the depth and strength of rock, 14 No. trial pits to measure the depth of soil and rock, 3 No. on-site CBR tests to measure the subgrade strength, and 3 No. infiltration pits to measure the on-site infiltration rate. The investigation also included laboratory testing on samples taken from trial pits and bore holes. The results of investigation indicate a shallow water table at the south of the site. No bedrock was encountered during the course of the study.

Figure 4.1 & Figure 4.2 below highlight the test locations of the site investigation.

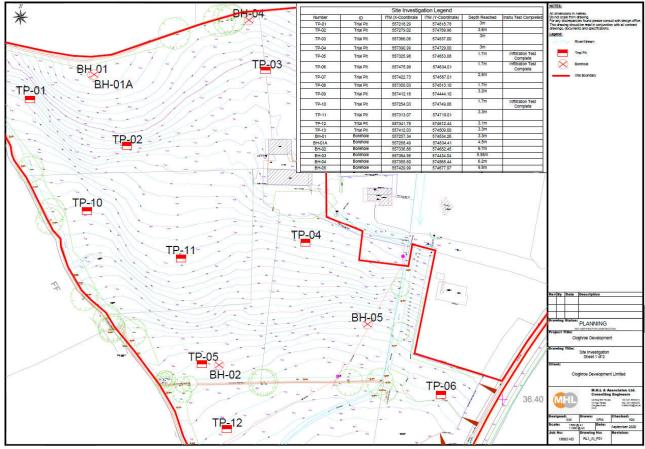


Figure 4.1: Site investigation locations

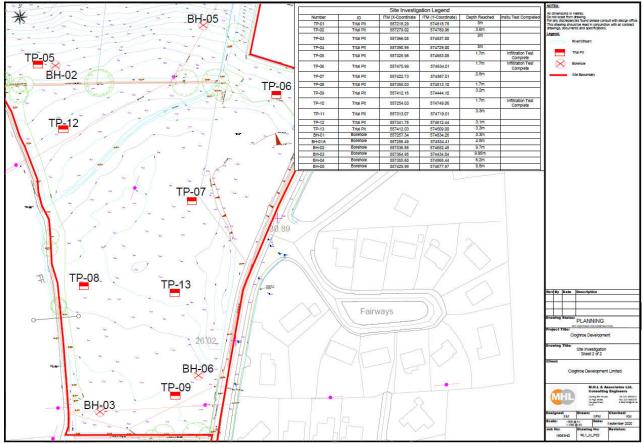


Figure 4.2: Site investigation locations

The complete results and logs of the site investigations are included in appendices of this report. A full Site Investigation Factual and Interpretative Report will be included as part of full application.

In addition to the site investigation, the design team has consulted with Irish Hydrodata Limited to conduct hydraulic modelling of the stream running along the western boundary of the site. This study, which has encompassed the entire floodplain of the stream, has clarified the potential impact of flood storage within the site. The results of this study have been included as part of the application documentation.

Site Investigation - Storm design

With regards to the design of the storm water network, it was found that some soil infiltration was possible to the north of the site with no infiltration potential to the south. This result, in combination with a known history of localised flooding, informed the design team that soak pits should not be utilised as a method of catering for surface water within the site. Rather, the decision was made to utilise several attenuation tanks with a designed flow control of less than greenfield run-off (QBar). See extract from infiltration test results in **Figure 4.2** below. The infiltration tests were carried out in accordance with BRE Digest 365.

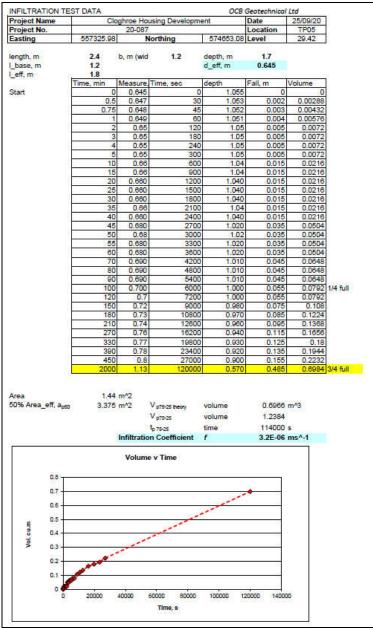


Figure 4.2: Infiltration test results - TP05

Site Investigation - Road design

The site investigation bore holes and trial pits have informed the design team of the depth and strength of subsoil throughout the site. No rock was encountered during the site investigation. From this information an approximate volume of cut and fill material needed to construct the proposed development has been determined. The samples taken from each pit and borehole also went through a series of lab testing to examine the re-usability of the subsoil. The results of these tests have been included in the Site Investigation Interpretive Report completed by OCB Geotechnical, which has been submitted as part of the application documentation.

It was found that the volume of subsoil to be excavated is approx. 9,700m³ with the volume of fill required being approx. 34,300m³. All excavated subsoil will be considered for suitability to be used as fill on site. It is proposed that excavated material generated on site shall be treated as necessary for use as general fill around the site. As a result of the assessment of several soil samples taken from the trial pits, the grading capability of the subsoils has been assessed as follows:

- Made ground consisting of reworked clay fill extending to approximately 0.70m in depth. Foundations
 will transfer to below any Made Ground.
- Glacial till consisting of sandy gravelly clay, frequently with low cobble content, typically firm or stiff, and extending to depths of approximately 2.80m. Observed below the topsoil or made ground and atop the sands and gravels beneath. Estimated Allowable Bearing Pressure (ABP) ranges from 40-150 kPa.
- Fluvioglacial deposits consisting of medium dense to very dense sands and gravels, extending to at least the depth of the borehole (4.50m – 10.00m). Estimated Allowable Bearing Pressure (ABP) ranges from 75-300 kPa..

The full results from this analysis has been included as a part of the application documentation.

Extracts from trial pit and borehole logs generated by OCB Geotechnical are highlighted in **Figure 4.3** below. The full log information is included in the attached appendices.

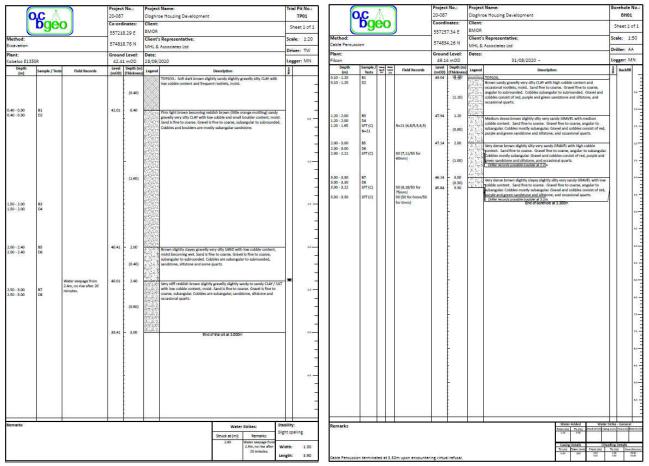


Figure 4.3: Trial Pit 01 and Bore Hole 01 logs

5. STORM WATER NETWORK

Storm design: (Return Period 1:100 with a 20% Climate Change Factor)

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

The proposed surface water drainage system is in accordance with Sustainable Urban Drainage Systems (SUDS) principles and divides the site into six (6) drainage catchments: all of which are proposed for attenuation utilising Stormtech Underground Chamber systems. Each attenuation system is designed with a controlled flow rate of less than the greenfield run-off rate for the catchment area. This results in an overall discharge from the site of 20.8 l/s which is less than the greenfield run-off of 25.29 l/s. The attenuated systems will ultimately discharge into the Owennagearagh River downstream of the Currabeha bridge via the public storm sewer present on the R617, refer to **Figure 5.2**.

The pipe diameters of the storm sewer were calculated to provide adequate capacity for the development and are shown in **Table 5.1** below. The minimum gradient in the development storm sewer network is 1/200. The maximum gradient in the development storm sewer network is 1/15.

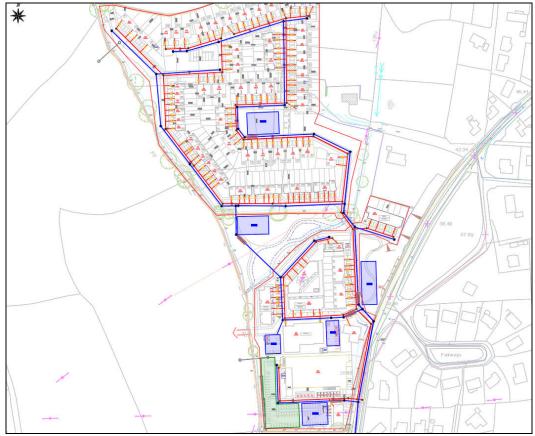


Figure 5.1: Proposed storm/foul lines, attenuation tank, and flood storage tank locations

The storm-runs generally flow in a south-easterly direction to the six proposed attenuation tanks. The design of the attenuation tanks was informed by the actual site greenfield run-off rate for each catchment using HR Wallingford Methodology IH124. However, in order to produce a robust design, the surface water run-off rate has been restricted further for each tank. Details of the attenuation tanks design and sizes are included in **Table 5.2** below. Attenuation tanks have been designed for a storm return period of 1 in 100 year and with a 20% climate change factor.

One outfall is proposed from the surface water network to tie into the existing storm sewer running along R617 Blarney Rd. As stated previously in this section, and shown in **Figure 5.2**, the development surface water will

ultimately discharge into the Owennagearagh River to the east of the Currabeha Bridge. The proposed storm design greatly reduces the quantity of surface water from the development lands entering the stream running along the western boundary of the site.

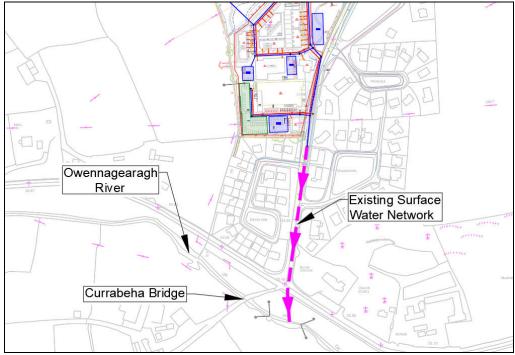


Figure 5.2: Proposed tie-in to existing surface water network

The existing land drain running from east to west through the centre of the site is to be expanded upon with the creation of two basins/wetland meadows prior to merging with the western boundary stream. In addition to slowing the velocity of surface water entering the western boundary stream, the basins provide for a good source of groundwater recharge.

Per **Figure 5.1**, a flood storage tank system incorporating Stormtech SC740 chambers is proposed at the southwest corner of the site. This system is proposed to accommodate for existing flood storage potential within the site during a 1000-year storm event. Refer to section 9 of this report for further detail.

Layout details of the stormwater network can be found in drawings RL1-OPN-P01 and RL1-OPN-P02. Longsections of the stormwater network are presented in drawings RL1-SLS-P01, RL1-SLS-P02, and RL1-SLS-P03.

Pipe Name	Upstream MH ID	Downstream MH Node	Length (m)	Dia (mm)	Vel (m/s)	Outflow (I/s)	Σ Area (ha)
S1.000	S1.000	S1.001	13.899	225	0.871	9.4	0.031
S1.001	S1.001	S1.002	33.712	225	0.842	18.0	0.060
S1.002	S1.002	S1.003	69.790	225	1.349	43.9	0.152
S1.003	S1.003	S1.004	85.667	225	3.075	120.4	0.422
S1.004	S1.004	S1.005	48.451	300	3.068	195.9	0.737
S1.005	S1.005	S1.006	22.196	300	3.234	227.7	0.863
S1.006	S1.006	S1.007	10.903	300	3.541	243.2	0.925
S1.007	S1.007	S1.008	70.834	300	1.526	7.2	0.961
S1.008	S1.008	S1.009	41.284	300	4.121	76.0	1.211
S1.009	S1.009	S1.010	53.387	375	4.042	80.4	1.228
S1.010	S1.010	S1.011	9.231	375	4.093	161.0	1.508

S1.011	S1.011	S1.012	18.480	375	2.282	161.3	1.508
S1.012	S1.012	S1.013	79.271	375	2.858	182.4	1.558
S1.013	S1.013	S1.014	6.223	450	0.906	11.3	1.838
S1.014	S1.014	S1.015	16.885	525	1.002	21.8	2.932
S1.015	S1.015	\$4.003	84.036	525	1.065	21.3	2.932
S2.000	S2.000	S2.001	65.313	225	1.729	21.2	0.070
S2.001	S2.001	S2.002	53.310	225	3.370	85.6	0.283
S2.002	S2.002	S2.003	48.879	225	3.791	118.3	0.399
S2.003	S2.003	S2.004	53.715	225	4.202	145.3	0.489
S2.004	S2.004	S2.005	14.471	225	4.353	173.1	0.579
S2.005	S2.005	S2.006	29.312	300	4.478	181.8	0.579
S2.006	S2.006	S5.002	63.108	300		3.7	0.579
S3.000	S3.000	S2.001	63.425	225	0.000	0.0	0.000
\$4.000	\$4.000	S4.001	38.615	375	0.000	0.0	0.000
S4.001	S4.001	S4.002	67.549	375	2.100	46.7	0.150
S4.002	S4.002	S4.003	14.366	375		2.4	0.272
S4.003	S4.003	Existing Storm	43.228	525	1.222	20.2	3.265
S5.000	S5.000	S5.001	15.709	225	0.000	0.0	0.000
S5.001	S5.001	S5.002	50.615	225	0.490	0.6	0.002
S5.002	S5.002	S5.003	43.552	300	0.940	12.4	0.621
S5.003	S5.003	S5.004	49.508	375		4.9	0.792
S5.004	S5.004	S5.005	12.757	375		6.5	1.032
S5.005	S5.005	S1.014	21.089	375	1.025	19.9	1.094
S6.000	S6.000	S6.001	48.202	225	0.624	24.8	0.083
S6.001	S6.001	S1.010	60.344	225	1.314	47.5	0.166
S7.000	S7.000	S1.012	42.346	225	1.812	15.0	0.050

Table 5.1: Storm Sewer design output

Attenuation	Catchment	Runoff ar	Storage volume			
tank ID	(m²)	Impervious area (100% runoff)	Green Area (10% runoff)	required (m³)		
AT-A	21,100	11,840	930	815		
AT-B	12,300	6525	570	470		
AT-C	10,980	6020	500	416		
AT-D	8230	6450	180	471		
AT-E	3850.	3070	80	210		
AT-F	4650	3390	130	235		
Reference Document:						

Table 5.2: Storm water attenuation tank design and sizing

> CIRIA C697 2007: The Suds Manual

The construction of the storm sewer pipe network shall be in accordance with BS EN 752:2008 - drain and sewer systems outside buildings.

6. FOUL WATER NETWORK

Foul design

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

Each person is assumed to consume 150 litres of water per day.

Dry Weather Flow (DWF) = 450 litres/dwelling/day (2.7 persons per dwelling with a 10%-unit consumption allowance).

Design for Peak Flow (6 X DWF) = 2,700 litres/dwelling/day (to account for surges in the consumption at peak times leading to surcharges in the pipe network).

For each pipe run, the accumulative number of households contributing to that section of pipework is used to calculate the design flow. Contributions from the creche, retail unit, and café with offices were also determined and included in the design.

The calculated foul pipe diameters to provide adequate capacity for the development are shown in **Table 6.1** below.

Layout details of the foul network can be found in drawings RL1-OPN-P01 and RL1-OPN-P02. Longsections of the foul network are presented in drawings RL1-FLS-P01, RL1-FLS-P02, and RL1-FLS-P03.

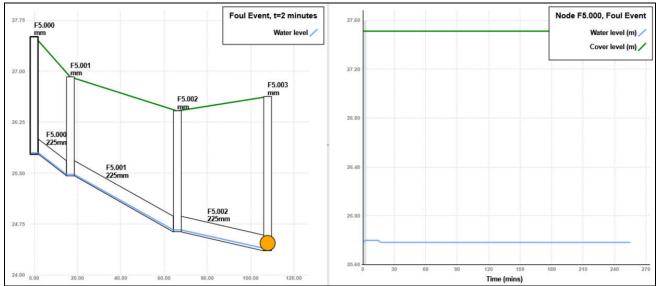


Figure 6.1: Typical Output profile plot and graph of F5.000 - F4.003 from foul sewer analysis package

The construction of the foul sewer pipe network shall be in accordance with Irish Water Code of Practice for Wastewater Infrastructure Doc IW-CDS-5030-03.

Pipe ID	Upsteam MH ID	Downstream MH ID	Length (m)	Dia (mm)	Vel (m/s)	Flow (I/s)
F1.000	F1.000	F1.001	23.006	150	1.546	1.2
F1.001	F1.001	F1.002	35.114	150	1.526	2.1
F1.002	F1.002	F1.003	34.681	150	1.879	3.3
F1.003	F1.003	F1.004	60.260	150	2.560	4.8
F1.004	F1.004	F1.005	54.684	150	2.562	5.4
F1.005	F1.005	F1.006	47.245	150	2.561	6.5
F1.006	F1.006	F1.007	48.769	150	2.562	7.1
F1.007	F1.007	F1.008	50.930	150	1.783	7.6
F1.008	F1.008	F2.008	71.353	150	0.826	8.5
F2.000	F2.000	F2.001	55.447	150	1.529	1.2
F2.001	F2.001	F2.002	86.484	225	2.582	4.3
F2.002	F2.002	F2.003	52.404	225	2.576	6.9
F2.003	F2.003	F2.004	25.921	225	2.517	7.5
F2.004	F2.004	F2.005	11.762	225	2.545	8.0
F2.005	F2.005	F2.006	71.555	225	2.733	8.2
F2.006	F2.006	F2.007	39.359	225	3.304	9.1
F2.007	F2.007	F2.008	49.127	225	3.301	9.1
F2.008	F2.008	F2.009	11.263	225	3.024	13.4
F2.009	F2.009	F2.010	20.986	225	3.189	13.5
F2.010	F2.010	F2.011	81.614	375	2.027	14.3
F2.011	F2.011	F2.012	21.348	375	2.895	15.4
F2.012	F2.012	F6.003	78.313	375	1.491	15.4
F3.000	F3.000	F1.004	67.954	225	3.304	1.2
F4.000	F4.000	F2.001	23.264	150	2.563	1.2
F5.000	F5.000	F5.001	16.763	225	2.125	1.2
F5.001	F5.001	F5.002	49.426	225	1.978	1.7
F5.002	F5.002	F5.003	41.681	225	1.243	3.0
F5.003	F5.003	F5.004	59.559	225	1.071	4.5
F5.004	F5.004	F2.011	14.842	225	1.035	5.4
F6.000	F6.000	F6.001	33.677	225	1.238	1.2
F6.001	F6.001	F6.002	69.743	225	1.085	1.2
F6.002	F6.002	F6.003	9.167	225	1.238	1.7
F6.003	F6.003	Ext Foul MH	5.227	375	1.285	15.6
F7.000	F7.000	F7.001	28.576	150	1.538	1.2
F7.001	F7.001	F2.010	14.114	150	1.532	2.8
Ext Pipe	Ext Foul MH	Ext MH 2	64.211	450	4.012	15.6

Table 6.1: Foul design output

Refer to Appendix B of this report for Irish Water statement of design acceptance letter received.

In order to accommodate the proposed connection, upgrade works to the existing pumps are required at the Cloghroe Wastewater Pumping Station. **Figure 6.2** shows the location of the pumping station in relation to the proposed development. The required works are classed as Exempted Development under Class 58 of the Planning and Development (Amendment) Regulations 2018 relating to the development by Irish Water, for the purpose of the provision of water services. Irish Water has confirmed that following the upgrades the pumping station will have sufficient capacity to adequately process the additional input from the operational demand of the proposed development.

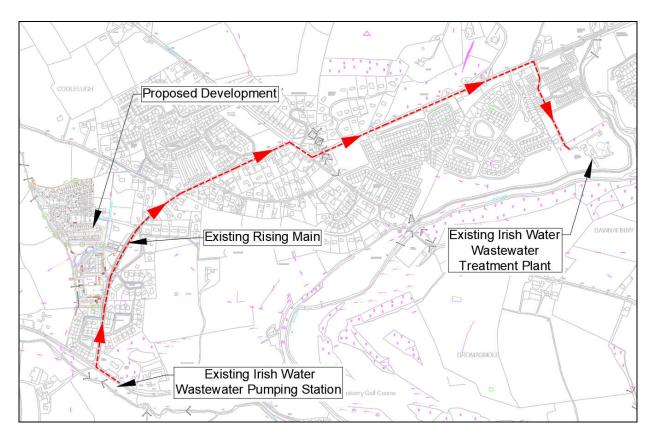


Figure 6.2: Location of existing Irish Water wastewater infrastructure

7. WATERMAIN NETWORK

Water design

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

A 150mm diameter HDPE watermain is proposed to supply potable water to all units and fire hydrants within the development. The proposed pipe network has no dead ends with loops serving a minimum of 4 units in accordance with Irish Water Code of Practice for Water Infrastructure Doc IW-CDS-5020-03.

The 150mm mains will be connected to the existing mainline present on R617.

Figure 7.1: Watermain layout

Layout details of the watermain network can be found in drawings PHDC-PWM-P01, PHDC-PWM-P02, PHDC-PWM-P03, PHDC-PWM-P04, PHDC-PWM-P05, PHDC-PWM-P06, and PHDC-PWM-P07.

The construction of the water supply pipe network shall be in accordance with Irish Water Code of Practice for Water Infrastructure Doc IW-CDS-5020-03. Service layout distances to comply with Irish Water Detail STD-W-11. A Statement of Design Acceptance from Irish Water has been received and included in **Appendix B** for the proposed design.

A Pre-Connection Enquiry Form has been submitted to Irish Water to progress connection details. The response from Irish Water is included in **Appendix A** of this report.

8. PUBLIC LIGHTING

PUBLIC LIGHTING DESIGN

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

A separate public lighting design report is included as part of the application documentation.

The public road lighting is designed to EN 13201 and British Standard BS 5489 utilising the "Lighting Reality Pro" software package. This design package is used to select an appropriate lantern type and to optimise the lighting design. The selected lantern is designed and manufactured to comply with EN 13201 with IP65 optic and 10 joules shock resistant gear housing. To meet with ecology requirements, in particular regarding potential bat activity, all installed lighting in the development will be Warm White (<3000K). Additionally, as agreed with the Cork City Council lighting department, minor estate roads will receive a step down in lighting classification to P4 instead of P3.

The design and selection of lighting columns is included in the public lighting design report. In response to the ecology report, all estate lighting columns are 6m high instead of 8m (or 10m) on the public roads.

In addition to internal estate roads, it is proposed to install a new public lighting scheme along the extent of the works as part of proposed public realm improvements.

Figure 8.1: Public lighting layout to north-east of development

Full details of the public lighting network can be found in the separate public lighting report including with this submission and drawings RL1-PPL-P01, RL1-PPL-P02, and RL1-PPL-P03.

9. FLOOD RISK ASSESSMENT

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

Irish Hydrodata Limited (IHD) was commissioned to prepare a site specific flood risk assessment [SSFRA] for the proposed SHD. The completed assessment is included in a separate report submitted with the application documentation.

Planning guidelines on flood risk and development have been published by the OPW and Department of Environment, Heritage and Local Government (DoEHLG). The below sections summarise how the developments design was assessed in accordance with the main principals of the guidelines.

SEQUENTIAL APPROACH

The sequential approach makes use of flood zones for river and coastal flooding, as described below:

Zone A High probability. This zone defines areas with the highest risk of flooding from of flooding. For river flooding it is defined as more than 1% probability or more than 1 in 100 years, and for coastal flooding it is defined as 0.5% probability or more than 1 in 200 years.

Zone B Moderate probability. This zone defines areas with a moderate risk of flooding. For river flooding it is defined as 0.1% to 1% probability or between 1 in 100 and 1 in 1000 years, and for coastal flooding 0.1% and 0.5% probability or between 1 in 200 and 1 in 1000 years.

Zone C Low probability. This zone defines areas with a low risk of flooding less than 0.1% probability or less than 1 in 1000.

The flood zones are then to be looked at with the vulnerability of the buildings proposed.

- Highly Vulnerable Hospitals, Garda stations, homes, motorways etc.
- Less Vulnerable commercial, retail, offices etc.
- Water Compatible Marina's, green areas

A sequential approach is then taken to assess the most favourable location for the development based on its vulnerability.

Zone A Water Compatible or Justification Test

Zone B Less Vulnerable if no other lands are available or highly vulnerable with Justification Test

Zone C Any development

DEVELOPMENT SEQUENTIAL TEST

Coastal Flood Risk

There is no risk associated with coastal flooding for this site as general ground levels for the site (circa 24.00m – 47.00m OD) are much higher than expected extreme coastal flood levels.

Fluvial Flood Risk

Fluvial flooding is the result of a river exceeding its capacity and excess water spilling out onto the adjacent floodplain.

Myplan.ie map incorporates many different sets of spatial information, including OPW Flood Mapping data (fluvial, pluvial, coastal flooding data and groundwater flood extents).

Figure 9.1 is an extract from www.myplan.ie and indicates that there is no fluvial flooding threat to the site of the proposed development.

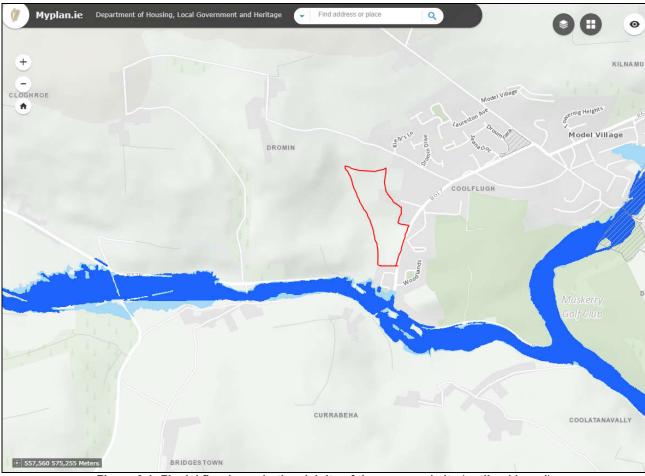


Figure 9.1: Fluvial flood map in the vicinity of the proposed site (outlined in red)

Pluvial Flooding

The OPW Flood Hazard Mapping Website is a record of historic flood events, and this database indicates that there is a recurring flood risk on the R579 and at its junction with the R617, see **Figure 9.2** below.

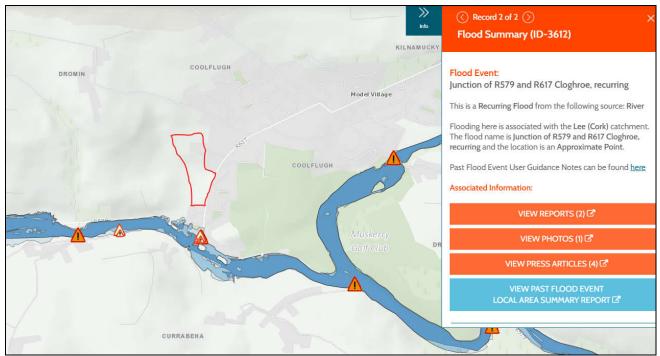


Figure 9.2: Historical flood events in surrounding area

The flood is as a result of the Owennagearagh River over topping its banks and has been further investigated as part of the Lee CFRAMS Study. **Figure 9.3** below shows the expected extent of flooding for each of the risk categories from 10% to 0.1% AEP Flood Events.

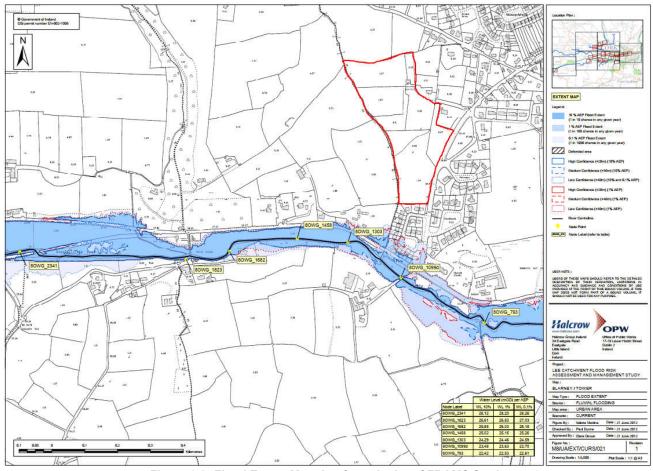


Figure 9.3: Flood Extent Mapping from the Lee CFRAMS Study

It is noted that the site of the proposed development has not been affected by the historical flood events nor is it vulnerable to predicted flood events as part of the Lee CFRAMS study. Evident from the mapping is that the adjoining residential scheme, Senandale, is vulnerble and will continue to be at risk unless remedial measures are put in place.

The following diagram indicates the location of rivers and streams in the vicinity of the site. **Figure 9.5** shows the historic 6 inch mapping for the area which does not include the man-made land drain running through the site. The stream running on the western boundary of the site is indicated on the historic map and hence a review of the catchment of this stream was undertaken. **Figure 9.6** is an extract from the OPW online map system which includes details of this stream. Evident from this map is the contributing catchment of 1.135 km², which is significantly less than the lower limit of 5 km² used to determine if watercourses are included in the CFRAMS model. The conclusion is that this northern stream running adjacent to the site was <u>not included</u> in the CFRAMS model and, therefore, the results of **Figure 9.3** relating to the site may be incomplete.

Figure 9.4 below presents the location and direction of the existing watercourses in relation to the site.

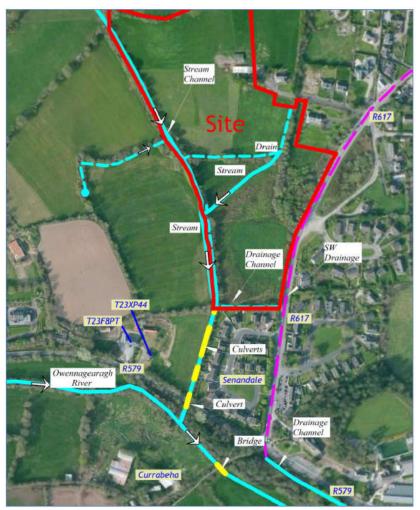
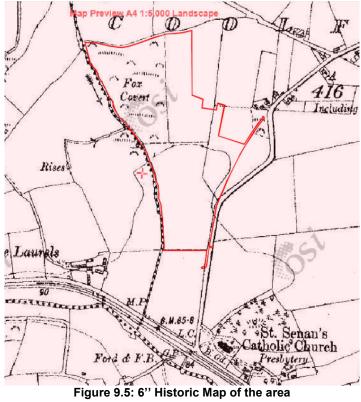



Figure 9.4: Location and direction of watercourses in relation to site

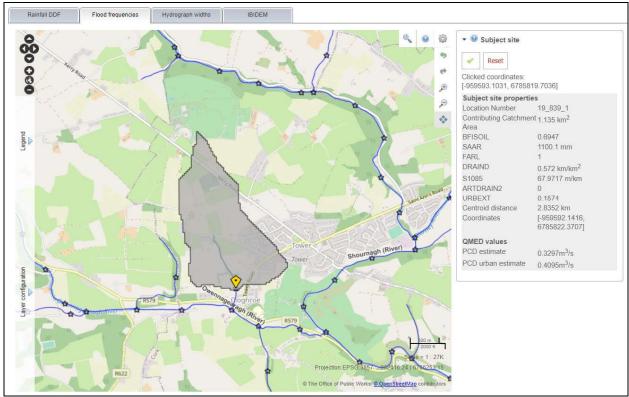


Figure 9.6: Catchment of stream running on the western boundary of the site

Figure 9.7: Flood mapping based on existing topography (stream flow at 0.1% AEPCC, river flow at 10m³/s)

Development Drainage

The proposed surface water drainage design proposes to discharge below QBAR for all rainfall events up to and including the 1 in 100-year storm event plus 20% climate change as discussed and agreed with the Cork City Council's Drainage Department. This exceeds the climate change factor of 10% required as part of GDSDS. As is evident from the HR Wallingford Greenfield Runoff Estimation tool (refer to **Appendix G**), the proposed discharge rate of 20.8 l/s is considerably lower than the 30-year and 100-year greenfield runoff rates and represents a substantial reduction in the peak run-off rates from the site. Furthermore, additional SuDS elements are proposed in areas where the designed layout, topography and ground conditions allow, which have not been included when sizing of the attenuation tanks. Specifically, a series of 'floodable' basins is proposed within the main greenspace serving the site that will restrict the volumes entering the stream on the western boundary.

When the overall site area is included, the resulting reduction in runoff used in the design is considerable, from 25.3 l/s down to 20.8 l/s. All positive storm drainage within the site is being redirected to an existing storm sewer in the R617 where it will ultimately outfall to the Owennagearagh River downstream of the Currabeha Bridge, resulting in current peak fluvial flows from the site entering the western boundary stream being largely removed. The result is that the proposed control is very conservative and will result in a reduced flood risk downstream.

Flood Storage System

The southern part of the site is low-lying and subject to flooding during heavy rainfall, refer to **Figure 9.7** above. A flood storage network with a volume of 1,200 m³ is proposed as part of the proposed development at the southwest corner of the site to compensate for the loss of floodable area following construction. This system will take the form of a Stormtech subsurface unit that will allow the stream to flood as required, refer to **Figure 9.9**. This unit will be located beneath the car park area of the proposed retail unit. In addition to the compensatory flood storage, a headwall with non-return valve is proposed at the outfall of the existing land drain running along the southern boundary of the site. This land drain falls in a westerly direction towards the western boundary stream and is located along the boundary between the proposed retail car park and Senandale. This non-return valve will remove the risk of any flood waters from the western stream entering the land drain and thereafter flooding into Senandale.

Figure 9.8 below presents the proposed layout for the storm network and the proposed 1,200 m³ compensatory flood storage system (displayed in green) at the south-west corner of the site.

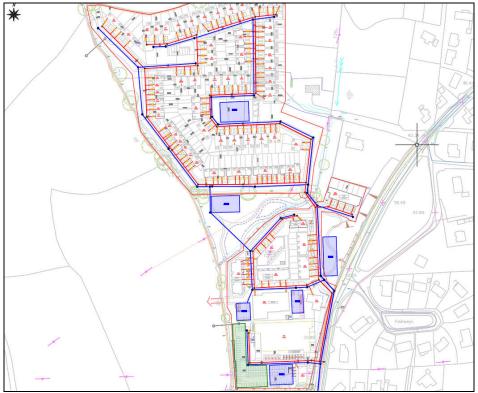


Figure 9.8: Proposed storm/foul lines, attenuation tank, and flood storage tank locations

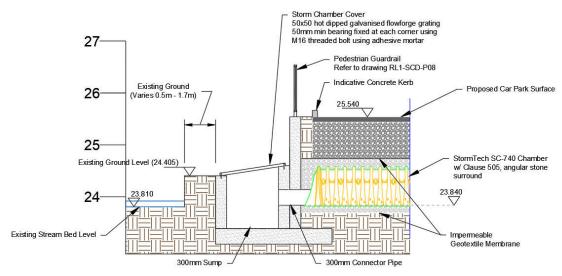


Figure 9.9: Cross-section of proposed flood storage with flood water receiving chamber

The proposed flood storage system is designed to manage the overflow from the western boundary stream during times of flooding and will provide protection to both the proposed development and adjoining properties in Senandale.

Figure 9.10 below presents the maximum flood level during a 0.1% AEPCC event when the proposed development is complete. It can be seen that flood waters previously evident at the north of Senandale, refer **Figure 9.7**, are no longer present. The flooding of Senandale emanating from the Owennagearagh River is still clearly visible.

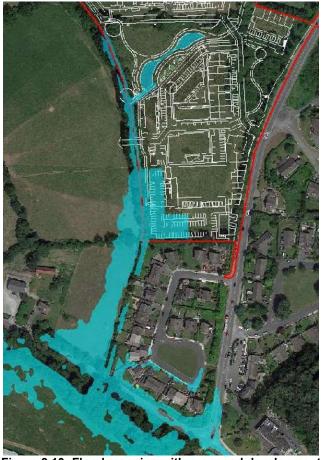


Figure 9.10: Flood mapping with proposed development (stream flow at 0.1% AEPCC, river flow at 10m³/s)

Referring to the separate Site-Specific Flood Risk Assessment completed by Irish Hydrodata Limited, longitudinal water surface profile comparisons indicate a negligible change in water levels arising from the development. The influence of the Owennagearagh River on water levels is clearly evident, however, with water levels predicted to be 300mm above the R579 road level during a 0.1% AEPCC event. Sections through the northern section of the Senandale housing estate show current potential flood waters to be removed from the site and contained within the proposed flood storage tank, where the overall level increase will be 60mm, during the 0.1% AEP event. As a consequence of protecting Senandale and diverting conveyance flows west, water levels over a very localised region in the lands west of Senandale (designated Flood Zone A) can be seen to marginally increase by 20mm. This increase quickly drops further to the south towards the R579 when the Owennagearagh River levels dominate. The modelling indicates no measurable increase in flood risk to any Senandale properties or to the dwelling further west along R579.

Complete layout details of the stormwater network can be found in drawings RL1-OPN-P01 and RL1-OPN-P02. Layout and cross-section details of the proposed flood storage system are provided in drawings RL1-PFS-P01, RL1-PFS-P02, RL1-PFS-P03, and RL1-PFS-P04. Detail of the land drain outfall with non-return valve is provided on drawing RL1-SCD-P07.

Flood Risk Assessment Conclusions

The site has been assessed in accordance with the Flood Risk Management Guidelines. As part of the sequential test, the OPW flood hazard maps, the draft OPW Preliminary Catchment Flood Risk Assessment Maps, and the SSFRA by Irish Hydrodata Limited with comprehensive modelling have been consulted.

Other sources of flood risk have been investigated including development drainage, however, the stream along the western boundary was identified as the source of flood waters that could potentially impact the site and the adjoining Senandale estate. To mitigate this risk, measures including compensatory flood storage, headwall with non-return valve at southern boundary land drain, and attenuated surface water drainage have been proposed. These measures will remove the risk of flooding occuring within the development site and remove the existing flood risk to Senandale from the western boundary stream.

As a consequence of the above measures and the diversion of conveyance flows west, a marginal increase of 20mm in water levels on a localised region within Flood Zone A lands to the west of Senandale is predicted. There is no increased risk to any nearby properties or developable land.

For the aforementioned reasons, the development is deemed appropriate in the proposed site location.

10. NZEB COMPLIANCE

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

This document provides an overview of the developments energy strategy and relates to the sustainability and energy targets proposed for the project. The development must approach the energy design in an efficient manner that reduces energy demand initially through passive strategies such as an efficient envelope which in turn reduces the energy demands relating to items such as the heating system. This initial approach in reducing the energy demand significantly aids the project in obtaining the required energy goals. Performance criteria relating to the development's envelope are set out in the following document.

The energy systems design must also focus on specifying energy efficient equipment to ensure the day to day running of the energy systems are optimised to further enhance energy savings and the related energy cost. Specifications relating to efficient heating, lighting and auxiliary equipment are set out in the document.

The report sets out to demonstrate a number of methodologies in Energy Efficiency, Conservation and Renewable Technologies that will be employed in part or in combination with each other for this development. These techniques will be employed to achieve compliance with the building regulations Part L and NZEB standards currently in public consultation.

BUILDING ENERGY RATING

As of 2006 all domestic buildings that were newly built and existing buildings that are for sale or rent require a BER (Building Energy Rating) certificate. The actual building energy rating is based on the primary energy used for one year and is classified on a scale of A1 to G with A1 being the most energy efficient. It also gives the anticipated carbon emissions for a year's occupation based on the type of fuel that the systems use. In order to identify Primary energy consumption of the building, the BER assesses energy consumed under the following headings:

- Building type (house, apartment etc)
- Building orientation
- Thermal envelope (insulation levels of the facade, roofs, ground floor etc)
- Air Permeability (how much air infiltrates into the building through the façade)
- Heating systems (what type of heat source is used and how efficient)
- Ventilation (what form of ventilation is used. Natural vent, mixed mode mechanical ventilation)
- Fan and pump efficiency (how efficient are the pumps and fans)
- Domestic hot water generation (is a high efficiency boiler used)
- Lighting systems (how efficient is the lighting in the building

Through the specification of an energy efficient façade and HVAC systems, the energy consumption of the building will be reduced compared to a set baseline. This ensures the environmental and economic impact of the operation of the building is reduced. The key philosophy of this plan is to reduce energy consumption by firstly limiting the energy needed by improving the buildings insulation. The second step is to utilise energy in the most efficient way through the selection and installation of energy efficient plant and equipment. The final step is to introduce energy from renewable sources to reduce the burden on Fossil Fuels.

BUILDING SERVICES (M&E) OVERVIEW

Heating & Ventilation systems

Various options for heating of residential units will be considered including include possible gas boilers, heat pumps or exhaust air heat pumps.

Air source heat pumps utilize low grade heat from external ambient air and transfer heat to heating system pipework. These systems operate with very high efficiencies (>400%) which provides significant carbon reductions in comparison to a traditional boiler system.

Gas heating options would comprise a high efficiency gas boiler for provision of heating and hot water. Photovoltaic panels would be installed in conjunction with the gas boiler option to achieve the Part L renewable energy requirements.

Exhaust air heat pumps utilise an exhaust air heat pump type system for heating, hot water and ventilation of the individual units. This will re-cycle the heat from your house's ventilation system. These machines are ideal for more compact air-tight low energy or passive homes. Air is drawn through ducts to the heatpump from the bathrooms, utility and kitchen areas. The cold waste air is discharged to outside through another duct, and condensation to a drain. Additional heat generated internally from lighting, people and domestic appliances is also utilised through heat recovery.

For every unit of electricity used to operate the heat pump, up to four to five units of heat are generated. Therefore, for every unit of electricity used to generate heat, 4-5 (400-500%) units of heat are produced. Efficiencies in order of 600% may also be achieved depending on ambient conditions.

Photovoltaic panels are best suited to sites which have an unobstructed southerly and south-easterly elevations. PV is particularly suitable due where there is a simultaneous requirement for heating, hot water and electrical demand. The on-site generation of electricity can supplement the electrical requirement for lighting, motors, etc & reduce the electrical demand and from the grid.

Applying this to each dwelling would considerably reduce the demand from the grid and consequently reduce losses and emissions from power stations. Such is the benefit of on site or distributed generation, the DEAP model determines that each kWh offset from PV equates to circa 2.5 times the thermal equivalent and reduces CO2 emissions by some 0.47Kg/kWh generated.

Lighting

All lighting to be energy efficient with provision made for low energy lamps such as Compact Fluorescent Lamps (CFLs) which use 80% less electricity and last up to 10 times longer than ordinary light bulbs in the dwellings.

11. FIRE SAFETY

PROJECT: CLOGHROE DEVELOPMENT, CLOGHROE, CORK

CLIENT: Cloghroe Development Limited

PROPOSED DEVELOPMENT: 198 residential units, a 42-child creche, a retail food store, and a café

The scheme has been designed in compliance with Technical Guidance Document B of the Building Regulations. The various design drawings and documents have been developed to align with these requirements. Refer in particular to overall site layout drawings and water services design drawings. The water services have been designed in accordance with Irish Water Standard Details. Please note Irish Water's Statement of Design Acceptance included in Appendix B.

Appendices

APPENDIX A

Irish Water Pre-connection response

SHANE MORIARTY

CARRIG MOR HOUSE 10 HIGH STREET, DOUGLAS ROAD Cork T12KC66

16 October 2020

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: CDS20006124 pre-connection enquiry - Subject to contract | Contract denied Connection for Multi/Mixed Use Development of 185 unit(s) at Cloghroe, Blarney, Co. Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Cloghroe, Blarney, Co. Cork (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.					
Water Connection	Feasible without infrastructure upgrade by Irish Water					
Wastewater Connection	Feasible Subject to upgrades					
	SITE SPECIFIC COMMENTS					
Water Connection	This Confirmation of Feasibility to connect to the Irish Water infrastructure does not extend to your fire flow requirements. Please note that Irish Water can not guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development.					
Wastewater Connection	In order to accommodate the proposed connection at the Premises, upgrade works are required at the Cloghroe Waste Water Pumping Station. Irish Water does not currently have any plans to carry out the works required. Should you wish to have such upgrade works progressed, Irish Water will require you to provide a contribution of a relevant portion of the costs for the required upgrades, please contact Irish Water to discuss.					
Strategic Housing Development	Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. In advance of					

submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie For further information, visit www.water.ie/connections.

Yours sincerely,

M Buyer

Maria O'Dwyer

Connections and Developer Services

APPENDIX B

Irish Water Statement of Design Acceptance

Shane Moriarty
Carrig Mor House
10 High Street
Douglas Road
Co. Cork T12KC66

26 January 2022

Ulsce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: Design Submission for Cloghroe, Blarney, Co. Cork (the "Development") (the "Design Submission") / Connection Reference No: CDS20006124

Dear Shane Moriarty,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at www.water.ie/connections. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative:

Name: Michael Galvin Email: mgalvin@water.ie

Yours sincerely,

Myonne Haesis Yvonne Harris

Head of Customer Operations

Appendix A

Document Title & Revision

•	PHDC-PWM-P01 Rev. 02	Proposed Watermain Sheet 1 of 7
•	PHDC-PWM-P02 Rev. 02	Proposed Watermain Sheet 2 of 7
•	PHDC-PWM-P03 Rev. 02	Proposed Watermain Sheet 3 of 7
•	PHDC-PWM-P04 Rev. 02	Proposed Watermain Sheet 4 of 7
•	PHDC-PWM-P05 Rev. 02	Proposed Watermain Sheet 5 of 7
•	PHDC-PWM-P06 Rev. 02	Proposed Watermain Sheet 6 of 7
•	PHDC-PWM-P07 Rev. 02	Proposed Watermain Sheet 7 of 7
•	RL1-OPN-P01 Rev. D	Overall Pipe Network Plan Sheet 1 of 2
•	RL1-OPN-P02 Rev. E	Overall Pipe Network Plan Sheet 2 of 2
•	RL1-FLS-P01 Rev. 02	Foul Long Sections Sheet 1 of 3
•	RL1-FLS-P02 Rev. 02	Foul Long Sections Sheet 2 of 3
•	RL1-FLS-P03 Rev. 02	Foul Long Sections Sheet 3 of 3

For further information, visit www.water.ie/connections

Notwithstanding any matters listed above, the Customer (including any appointed designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay Works. Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

APPENDIX C

Site Investigation Bore Logs

	*		Projec	t No.:	Projec	t Name:	Во	rehole	No.:
) C //	.	20-087	,	Cloghr	oe Housing Development		BH0:	1
	bae	0	Coordi	nates:	Client:		S	heet 1	of 1
	3		55725	7.34 E	BMOR				
Method: Cable Percus:	sion		57483	4.26 N		s Representative:	Sca	ale: 1	:50
	SION					Associates Ltd	Dri	iller: A	ΑA
Plant: Pilcon				d Level: 4 mOD	Dates:	31/08/2020 -	Los	gger: N	ЛN
Depth	Sample / Casing	Water Sield Bassade	Level	Depth (m)			_		
(m) 0.10 - 1.20	Tests Depth (m)	Depth (m) Field Records	(mOD) 49.04	(Thickness)		Description 1 TOPSOIL	Water	Backfil	' -
1.20 - 2.00 1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B3 D4 SPT (C)	N=21 (4,8/5,5,6,5)	47.94	(1.10)		Brown sandy gravelly very silty CLAY with high cobble content and occasional rootlets, moist. Sand fine to coarse. Gravel fine to coarse, angular to subrounded. Cobbles subangular to subrounded. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz. Medium dense brown slightly silty very sandy GRAVEL with medium cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red,			1.0 —
2.00 - 3.00 2.00 - 3.00 2.00 - 2.21	N=21 B5 D6 SPT (C)	50 (7,11/50 for 60mm)	47.14	2.00		purple and green sandstone and siltstone, and occasional quartz. Very dense brown slightly silty very sandy GRAVEL with high cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz. Driller records possible boulder at 2.2m.			2.0 —
3.00 - 3.30	B7		46.14	- - 3.00	• X: , •X ;				3.0
3.00 - 3.30 3.00 - 3.30 3.00 - 3.22	D8 SPT (C)	50 (8,18/50 for 75mm)	45.84	(0.30)	a X , a X ;	Very dense brown slightly clayey slightly silty very sandy GRAVEL with low cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red,			3.0
3.30 - 3.30	SPT (C)	50 (50 for 0mm/50 for 0mm)		-		Driller records possible boulder at 3.2m. End of borehole at 3.300m			4.0 —
				-					5.5
				-					6.5 -
				-					7.5 -
				-					8.0 —
				- - - -					9.0 —
				-					9.5
				<u> </u>					
Remarks						Water Added Water 5 From (m) To (m) struck at (m) Casin		- Genera Time (min) R	
						1.20 3.30			
						Casing Details Chise To (m) Diam (mm) From (m)	elling To (n	Details n) Time	hh:mm
		at 3.30m upon encount				3.30 200 2.20 3.20	2.30		00:40 01:00

			Project	: No.:	Project	Name:	Во	rehol	e No.:
			20-087		Cloghro	oe Housing Development		вно	1A
	bae)	Coordi	nates:	Client:		ç	heet	1 of 1
			55725	8.49 E	BMOR		Ĺ		
Method:	-:		57483	4 41 N		s Representative:	Sca	ale:	1:50
Cable Percus:	sion					Associates Ltd	Dri	iller:	AA
Plant: Pilcon				d Level: 3 mOD	Dates:	02/09/2020 -	Los	gger:	MN
Depth	Sample / Casing	Water	Level	Depth (m)			_		
(m)	Tests (m)	Depth (m) Field Records	(mOD)	(Thickness)	Legend	Description	Water	Backf	-
(m) 0.10 - 1.20 0.10 - 1.20 1.20 - 2.00 1.20 - 2.00 1.20 - 2.00 1.20 - 1.21 2.00 - 3.00 2.00 - 3.00 2.00 - 3.00 2.00 - 3.45 4.00 - 4.50 4.00 - 4.50 4.00 - 4.50 4.50 - 4.50 4.50 - 4.50	Tests (m)	50 (50 for 10mm/50 for 0mm) 59 (7,9/59 for 170mm) N=45 (7,7/11,13,10,11) N=55 (9,11/11,10,15,19) 50 (50 for 0mm/50 for 0mm)	49.03 47.93 46.13 44.63	(Thickness) (8:10) (1.10) (1.20) (1.80) (1.00) (1.00) (1.50) (1.50)		TOPSOIL Brown sandy gravelly very silty CLAY with high content of cobbles up to small boulder size and occasional rootlets, moist. Sand fine to coarse. Gravel fine to coarse, angular to subrounded. Cobbles subangular to subrounded. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz. Very dense brown slightly silty very sandy GRAVEL with high cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz. Driller records possible boulder at 1.2m. Driller records possible boulder at 1.7m. Driller records possible boulder at 2.3m. Dense brown slightly silty very sandy GRAVEL with medium cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz. Driller records possible boulder at 3.7m. Very dense brown slightly silty very sandy GRAVEL with high cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz. Driller records possible boulder at 4.5m. End of borehole at 4.500m	m The state of the		1.5 - 1.5 -
				-					9.0 -
Remarks	1	l l	1					- Gener	
						From (m) To (m) Struck at (m) Casing 1.20 4.50	g to (m)	Time (min)	Rose to (n
						Casing Details Chis To (m) Diam (mm) From (m)	elling To (n	Details	ne (hh:mm
						4.50 200 1.20 1.70	1.30		00:40 00:30
apie Percussi	on terminated a	t 4.50m upon encounteri	ng virtua	ı retusal.		2.30	2.40		00:30

6		^			Project		_	: Name:	Вс			No.:
C					20-087		Ü	pe Housing Development		В	3H0	2
	Dge	e (Coordi		Client: BMOR		9	Shee	et 1	of 1
Method:				,	557336	5.88 E		s Representative:	50	ale:	. 1	.50
Cable Percuss	ion				574652	2.45 N		Associates Ltd				
Plant:					Ground	l Level:	Dates:	Associates Eta	Dr	rille	r: A	А
Pilcon						5 mOD	Dutesi	03/09/2020 - 07/09/2020	Logger: IH		4	
Depth	Sample /	Casing Depth	Water Depth	Field Records	Level	Depth (m)	Legend	Description	Water	Ba	ckfil	
(m)	Tests	(m)	(m)		(mOD)	(Thickness)	X/XX/X	TOPSOIL	3			-
0.20 - 1.20 0.20 - 1.20	B1 D2				29.14	(0.20) - 0.20 - 0.20 - (1.00)	×	Light brown slightly gravelly slightly sandy very silty CLAY with rootlets. Gravel is fine to coarse, angular to subangular. Sand is fine to coarse.				0.5 -
1.20 - 1.80	B3				20.14	- 1 20	X					1.0 —
1.20 - 1.80 1.20 - 1.80 1.20 - 1.65	D4 SPT (C) N=29			N=29 (0,1/4,7,9,9)	28.14	1.20 - - - (0.60)	x	Stiff brown slightly sandy silty very gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular.				1.5 -
1.80 - 3.00 1.80 - 3.00	B5 D6				27.54	1.80	× × 0.	Firm brown slightly sandy silty gravelly CLAY with low cobble content. Sand	1			
2.00 - 2.45	SPT (C) N=13			N=13 (2,2/4,3,3,3)		- - - (1.20) -	× 0 × 0	is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular.				2.0 -
3.00 - 4.00	B7				26.34	- 3.00	× × .					3.0 —
3.00 - 4.00 3.00 - 3.45	D8 SPT (C) N=16			N=16 (3,4/4,4,4,4)	20.0	- (1.00)	0 × 0 0 × 0 0 × 0 0 × 0	Stiff dark brown slightly sandy silty gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular.				3.5
4.00 - 5.00 4.00 - 5.00 4.00 - 4.45	B9 D10 SPT (C)			N=24 (5,5/5,5,8,6)	25.34	- - - 4.00 -	×°	Medium Dense brown slightly silty sandy very clayey GRAVEL with medium cobble content and low small boulder content. Sand is fine to coarse.				4.0 —
5.00 - 6.00	N=24 B11				24.34	- (1.00) - - - - 5.00		Gravel is fine to coarse, angular to subangular. Cobbles and boulders are subangular. Dense dark grey slightly silty clayey very sandy GRAVEL with low cobble		7		4.5
5.00 - 6.00 5.00 - 5.45	D12 SPT (C) N=35			N=35 (6,10/8,9,8,10)		- - - (1.00)		content. Sand is fine to coarse. Gravel is fine to coarse, subangular. Cobbles are subangular.				5.5 -
6.00 - 7.00 6.00 - 7.00 6.00 - 6.45	B13 D14 SPT (C) N=54			N=54 (12,17/12,12,17,13)	23.34	- 6.00 		Very Dense dark grey slightly clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subangular.				6.0 -
7.00 - 8.00 7.00 - 8.00 7.00 - 7.45	B15 D16 SPT (C) N=65			N=65 (10,10/14,19,16,16)		- (2.00) - (2.00) 						7.0 -
8.00 - 9.00 8.00 - 9.00 8.00 - 8.45	B17 D18 SPT (C)			N=54	21.34	- - - - - - -	50.0 0.0 0.0	Very Dense dark grey slightly clayey very sandy GRAVEL with medium cobble content and low small boulder content. Sand is fine to coarse. Gravel is angular to subangular. Cobbles and boulders are angular to				8.0 —
9.00 - 9.70	N=54 B19			(9,13/13,12,15,14)	20.34	- (1.00) - - - - - 9.00		subangular.		۰		9.0 —
9.00 - 9.70	D20				20.34	-	$\overset{\circ}{\circ}\overset{\circ}{\circ}$	Very Dense dark grey slightly clayey very sandy GRAVEL with medium cobble content. Sand is fine to coarse. Gravel is angular to subangular.			≓ .	
9.00 - 9.45 9.60 - 9.74	SPT (C) N=54 SPT (C)			N=54 (11,12/12,12,15,15) 50 (43 for 135mm/50 for	19.64	(0.70) - - - 9.70	0, *0 0, *0	Cobbles are angular to subangular. End of borehole at 9.700m		۰		9.5 -
				0mm)				23 01 2010/1010 41 0.7 00111				
								Water Added Water S	tribe	- C-	nero	
Remarks								Water Added Water S From (m) To (m) Struck at (m) Casing				ose to (r
								1.20 4.90 4.90 4.90 4.90) Time		4.50
								Casing Details Chise To (m) Diam (mm) From (m)	elling To (r	g Deta m)		(hh:mr
-1-1- 6						l£		9.70 200 9.60	9.7			01:00
pie Percussio	ıı terminat	.ea a	ι 9./(m upon encounterir	ıg virtua	ı retusal.					<u></u>	

- 7			Project	t No.:	Project	t Name:	Borehole No.:
),C /\		20-087	,	_	oe Housing Development	BH03
	Dge	0	Coordi	nates:	Client:		Sheet 1 of 1
			55736	4.95 E	BMOR		
Method: Cable Percus	rsion		57443	4.04 N		s Representative:	Scale: 1:50
Plant:	31011		Group	d Level:	Dates:	Associates Ltd	Driller: AA
Pilcon				9 mOD	Dates:	10/09/2020 - 11/09/2020	Logger: IH
Depth	Sample / Casing	Water Depth Field Records	Level	Depth (m)	Legend	Description	Backfill
(m) 0.10 - 1.20	Tests (m)	(m)	(mOD) 24.38	(Thickness)	\/X\\/	TOPSOIL	3
0.10 - 1.20	D2			(1.10)		Mottled brown and light brown slightly sandy slightly gravelly silty CLAY with occasional rootlets. Sand is fine to coarse. Gravel is fine to coarse, subangular.	0.5
				_	X X		1.0 -
1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B3 D4 SPT (C) N=16	N=16 (4,4/3,5,4,4)	23.28	1.20	X	Firm to Stiff brown slightly silty slightly gravelly sandy to very sandy CLAY with occasional rootlet fragments.	1.5
				(1.40)	X		
2.00 - 2.60 2.00 - 2.60 2.00 - 2.45	B5 D6 SPT (C) N=16	N=16 (3,3/3,5,4,4)		-	X		2.0
3.00 - 4.00	В7		21.88	- 2.60 - - -		Medium Dense purple / brown slightly silty clayey very sandy GRAVEL with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subrounded.	J ⊠I` • H.• • I
3.00 - 4.00 3.00 - 3.45	D8 SPT (C) N=22	N=22 (2,5/4,7,6,5)		(1.40)			3.5
4.00 - 4.70	В9		20.48	4.00	×0	Loose purple / brown slightly silty clayey very sandy GRAVEL with medium	4.0 -
4.00 - 4.70 4.00 - 4.45	D10 SPT (C) N=5	N=5 (0,1/0,1,2,2)		(0.70)		cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subrounded.	4.5
4.70 - 6.00 4.70 - 6.00 5.00 - 5.45	B11 D12 SPT (C) N=9	N=9 (1,2/2,2,3,2)	19.78	- 4.70 - - -		Loose purple / brown clayey SAND. Sand is fine to coarse.	5.0 -
				(1.30)			5.5
6.00 - 7.00 6.00 - 7.00 6.00 - 6.45	B13 D14 SPT (C) N=10	N=10 (2,5/3,3,2,2)	18.48	6.00	X, X, X X, X, X X, X, X X, X, X	Loose to Medium Dense purple / brown slightly silty very gravelly SAND. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse.	6.0
7.00 - 8.00	B15		17.48	7.00	*, * ; * * * * * *	Medium Dense reddish brown slightly clayey SAND. Sand is fine to coarse.	7.0 -
7.00 - 8.00 7.00 - 7.45 7.50	D16 SPT (C) N=17 U21	N=17 (3,4/6,4,3,4)		(1.00)			7.5
8.00 - 9.00 8.00 - 9.00 8.00 - 8.45	B17 D18 SPT (C) N=17	N=17 (4,4/4,4,5,4)	16.48	8.00 - 8.00 - (1.00)		Medium Dense reddish brown slightly clayey gravelly SAND with low cobble content. Gravel is fine to coarse, subangular. Sand is fine to coarse. Cobbles are subangular to subrounded.	8.0 -
9.00 - 9.50	B19		15.48	9.00		Dense reddish brown slightly clayey gravelly SAND with medium cobble	9.0 -
9.00 - 9.50 9.00 - 9.45 9.50 - 9.95	D20 SPT (C) N=31 SPT (C)	N=31 (7,8/5,9,9,8) N=38		- - - (0.95)		and low boulder content. Gravel is fine to coarse, subangular. Sand is fine to coarse. Cobbles and boulders are subangular to subrounded.	9.5
	N=38	(8,11/9,10,10,9)	14.54	9.95	× 0.× 0×.0	Fourth and 10050	
			24.54	J.J.		End of borehole at 9.950m Water Added Water	Strike - General
Remarks						From (m) To (m) Struck at (m) Casin	g to (m) Time (min) Rose to (
						0.60 2.60	20 0.50 2.60 20 1.20
							elling Details
						To (m) Diam (mm) From (m) 9.95 200	To (m) Time (hh:mn
able Percuss	ion terminated ।	upon reaching scheduled	depth.				

		^		<u> </u>	Project		-	t Name:	Вс	rehol	
•					20-087		Ū	oe Housing Development		BHO)4
	uy	C			Coordi		Client: BMOR			Sheet 1	l of 1
Method:				,	55735	5.6U E		s Representative:	Sc	ale:	1:50
Cable Percu	ssion				57486	8.44 N		Associates Ltd			
Plant:					Groun	d Level:	Dates:		_Dr	riller:	AA
Pilcon						6 mOD		27/08/2020 - 31/08/2020	+-	gger:	MN
Depth (m)	Sample / Tests	Depth I	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backf	iII _
0.00 - 1.20 0.00 - 1.20	B1 D2					(1.20)		Brown slightly sandy gravelly very silty CLAY with low cobble content and occasional rootlets, moist. Sand fine to coarse. Gravel fine to coarse, angular to subrounded. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz.			0.5
1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B3 D4 SPT (C) N=14			N=14 (3,4/2,5,4,3)	46.56	1.20	9 X 9 9 X 9 X 9 X 9 X 9 X 9 X 9 X 9 X 9	Medium dense brown slightly clayey slightly silty very sandy GRAVEL with low cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz.			1.5
2.00 - 3.00 2.00 - 3.00 2.00 - 2.45	B5 D6 SPT (C) N=24	2.00 0		N=24 (5,5/5,7,6,6) 27-08-2020	45.76	2.00	4 X 4 X 4 X 4 X 4 X 4 X 4 X 4 X 4 X 4 X	Medium dense brown slightly silty very sandy GRAVEL with medium cobble content. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz.			2.0 =
3.00 - 4.00 3.00 - 4.00 3.00 - 3.24	B7 D8 SPT (C)			70 (4,12/70 for 90mm)	44.76	3.00		Very Dense to Dense brown slightly silty very sandy GRAVEL with medium, locally high, cobble content and a trace of slightly sandy gravelly silty clay pockets. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, occasional red conglomeratic sandstone,			3.0 -
1.00 - 5.00 1.00 - 5.00 1.00 - 4.45	B9 D10 SPT (C) N=47	4.00 2		N=47 (3,5/11,12,11,13) 28-08-2020		(2.00)		and occasional quartz. Driller records possible boulder at 3.0m.			4.0 -
5.00 - 6.20 5.00 - 6.20 5.00 - 5.45	B11 D12 SPT (C) N=48			N=48 (4,5/9,12,14,13)	42.76	5.00		Very dense brown slightly clayey slightly silty sandy GRAVEL with high cobble content and a trace of slightly sandy gravelly silty clay pockets. Sand fine to coarse. Gravel fine to coarse, angular to subangular. Cobbles mostly subangular. Gravel and cobbles consist of red, purple and green sandstone and siltstone, and occasional quartz.			5.0
5.00 - 6.20 5.20 - 6.20	SPT (C)	6 20		50 (6,9/50 for 50mm) 50 (50 for 0mm/50 for 0mm)	41.56	- - - 6.20 -	4 X	Driller records possible boulder at 6.2m. End of borehole at 6.200m			6.0
		6.20		31-08-2020							7.0 7.5 8.0 8.5 9.0
Remarks						-		Water Added Water		e - Gener	
)m upon encounteri					elling To (1	0	ne (hh:n 01:00 01:00

			Project	: No.:	Project	t Name:	Во	rehole	No.:
) .C /	\setminus	20-087		Cloghr	oe Housing Development		вно	5
	bae	O	Coordi	nates:	Client:		,	Sheet 1	of 1
	-90		55742	9.99 E	BMOR		L	11661 1	
Method:				7.07.N	Client's	s Representative:	Sc	ale: 1	1:50
Cable Percus	sion		5/46/	7.97 N	MHL &	Associates Ltd	Dr	iller: /	ΔΔ
Plant:			Ground	d Level:	Dates:		-		
Pilcon				4 mOD		09/09/2020 - 10/09/2020	Lo	gger:	Н
Depth (m)	Sample / Cas De Tests (r	pth Depth (m) Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfil	II
0.10 - 1.20	B1 D2		30.64	(0:10)	XXXV	TOPSOIL			
0.10 - 1.20	D2			_	<u>×</u>	Light brown (light grey and yellow mottling) slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, subangular to			
				(1.10)	<u>×-×</u> -	subrounded.			0.5
				(1.10)	X				
				-	×				1.0 —
1.20 - 2.00 1.20 - 2.00	B3 D4		29.54	1.20	×	Stiff light brown (light grey and yellow mottling) slightly sandy gravelly silty	1		
1.20 - 1.65	SPT (C)	N=18 (1,3/4,4,5,5)		(0.80)	<u>×</u> -×	CLAY. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded.			1.5 -
	N=18			(0.80)	<u>×</u> -×				
2.00 - 2.30	B5		28.74	2.00	× × ·	Stiff yellowish brown slightly sandy slightly silty gravelly CLAY. Sand is fine	-		2.0 -
2.00 - 2.30 2.00 - 2.45	D6 SPT (C)	N=20 (4,7/5,4,5,6)	28.44	(0.30) - 2.30	^ ×	to coarse. Gravel is fine to coarse, subangular.			
	N=20 B7	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u></u>	× × 0	Stiff light brown slightly silty sandy very gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to			2.5
2.30 - 4.00 2.30 - 4.00	D8			Ē	× × 0	subangular. Cobbles are angular to subangular.			
3.00 - 3.45	SPT (C)	N=29 (6,4/7,7,6,9)		_	× × 0				3.0
	N=29			(1.70)	× × 0				
					× × 0				3.5
				-	× × 0				3.3
4.00 5.00	B0		26.74	4.00	× × 0				40
4.00 - 5.00 4.00 - 5.00	B9 D10		26.74	4.00	×	Dense light brown slightly silty clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular.			4.0 -
4.00 - 4.45	SPT (C) N=30	N=30 (5,7/9,7,6,8)		-	× × ×	coarse. Graver is line to coarse, angular to subangular.			
				(1.00)	× × ×				4.5 -
				-	- ×:				
5.00 - 6.00 5.00 - 6.00	B11 D12		25.74	- 5.00 -	0 <u>x</u> xo	Dense light brown slightly silty clayey very sandy GRAVEL with low cobble	1		5.0 —
5.00 - 5.45	SPT (C) N=46	N=46			0 <u>,</u> vo	content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular.			
	N=46	(8,11/14,10,10,12)		-	0 <u>,</u> vo				5.5 -
				[0 <u>,</u> vo				
6.00 - 7.00 6.00 - 7.00	B13 D14			- (2.00)	0 <u>,</u> vo				6.0 —
6.00 - 6.45	SPT (C)	N=42		-	0 <u>,</u> vo				
	N=42	(9,11/10,9,9,14)			0 <u>,</u> vo				6.5
				‡	<u>0</u> o				
7.00 - 8.00	B15		23.74	7.00	<u> </u>	Very Dense light brown slightly silty clayey very sandy GRAVEL with	+		7.0 -
7.00 - 8.00 7.00 - 7.45	D16 SPT (C)	N=50		-	<u>o</u> o	medium cobble and low small boulder content. Sand is fine to coarse.			
	N=50	(10,12/12,12,11,15)		(1.00)	Ŏ, vo	Gravel is fine to coarse, angular to subangular. Cobbles are angular.			7.5
				[<u>o</u> o				
8.00 - 9.00	B17		22.74	- - 8.00	Ų. ō	Venu Dance light growing har we all the standard of the Control of			8.0 -
8.00 - 9.00 8.00 - 8.45	D18 SPT (C)	N=51		Ē		Very Dense light greyish brown slightly clayey sandy GRAVEL. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular.			
0.00 - 0.43	N=51	(9,14/13,13,11,14)		(1.00)					8.5
				ļ ,					
9.00 - 9.80	B19		21.74	9.00					9.0 —
9.00 - 9.80	D20		21./4	}.00 -	Ö, vo	Very Dense light greyish brown slightly clayey sandy GRAVEL with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to			3.0
9.00 - 9.45	SPT (C) N=68	N=68 (12,12/12,17,20,19)		(0.80)	<u>o</u> o	subangular. Cobbles are angular.			9.5 -
				<u> </u>	<u>o</u> o				9.5
9.80 - 9.81	SPT (C)	50 (50 for 10mm/50 for 0mm)	20.94	9.80	10000	End of borehole at 9.800m	1		
		ioi oiliiii)				1 100 100 1 100 100	1		
Remarks						From (m) To (m) Struck at (m) Casing	g to (m)		Rose to (
						2.40 2	.40	20	0.60
								Details	. 0.:
						To (m) Diam (mm) From (m) 9.80 200 9.80	To (r		01:00
able Percussi	on terminated	l at 9.80m upon encounter	ing virtua	ıı retusal.					

		Project	: No.:	Project Name:			Borehole No.:			
),C /\		20-087		Cloghr	oe Housing Development		вно	06	
	Dde	0	Coordi	nates:	Client:			Sheet :	1 of 2	
	3		55742	6.96 E	BMOR					
Method:			574/5	6.90 N		s Representative:	Sc	ale:	1:50	
Cable Percus	sion					Associates Ltd	Dı	riller:	AA	
Plant: Pilcon				d Level: 6 mOD	Dates:	14/09/2020 - 15/09/2020	Lo	gger:	MN	
Depth	Sample / Casing	g Water Depth Field Records	Level	Depth (m)			-	-		
(m)	Tests (m)	Depth (m) Field Records	(mOD)	(Thickness)		Description TOPSOIL	Water	Backf	" -	
0.10 - 1.00 0.10 - 1.00	B1 D2		24.46	- (8: 1 8)	<u> </u>	Driller Described: Brown / grey slightly gravelly sandy CLAY.	1			
				(0.00)					0.5 -	
				(0.90)						
1.00 - 1.80	B3		23.56	1.00	, :, ·				1.0 -	
1.00 - 1.80	D4		25.50	1.00		Driller Described: (Firm) Brown slightly gravelly sandy CLAY.			1.0	
1.20 - 1.65	SPT (C) N=9	N=9 (2,1/2,3,2,2)		(0.80)						
				-			_	_	1.5 -	
1.80 - 2.40	B5		22.76	1.80	- X	Driller Described: (Firm) Grey / Purple slightly gravelly silty sandy CLAY.	\dashv	_[
1.80 - 2.40 2.00 - 2.45	D6 SPT (C)	N=11 (2,2/4,2,3,2)		_ - (0.60)	×	,		-	2.0 —	
2.40 - 3.00	N=11 B7		22.16	2.40	X			2		
2.40 - 3.00 2.40 - 3.00	D8		22.16	2.40		Driller Described: (Medium Dense) Sandy GRAVEL	\prod		2.5 -	
				-						
3.00 - 4.00	В9			F					3.0 —	
3.00 - 4.00 3.00 - 3.45	D10 SPT (C)	N=16 (2,2/3,3,5,5)		(1.60)						
	N=16			-					3.5 -	
				-						
4.00 - 4.60	B11		20.56	4.00					4.0 —	
4.00 - 4.60	D12		20.30			Driller Described: (Medium Dense) Silty sandy gravelly CLAY.				
4.00 - 4.45	SPT (C) N=18	N=18 (3,3/4,5,5,4)		- (0.60)						
4.60 - 6.00	B13		19.96	4.60		Driller Described: (Medium Dense to Dense) Very sandy GRAVEL.	4	2	4.5 -	
4.60 - 6.00	D14			-						
5.00 - 5.45	SPT (C) N=28	N=28 (3,5/5,5,8,10)		<u> </u>					5.0 —	
	20			E						
				<u> </u>					5.5 -	
				(2.40)						
6.00 - 7.00	B15			F					6.0 —	
6.00 - 7.00 6.00 - 6.45	D16 SPT (C)	N=45		<u> </u>						
	N=45	(2,7/8,14,13,10)		<u> </u>					6.5 -	
				-						
7.00 - 8.00	B17		17.56	7.00					7.0 —	
7.00 - 8.00	D18		17.30	- 7.50	× ×	Driller Described: (Dense to Very dense) Slightly silty very sandy CLAY.			7.0	
7.00 - 7.45	SPT (C) N=48	N=48 (5,9/11,9,15,13)		-	× × ×					
		, , , , , , , , , , , , , , , , , , , ,		[×				7.5 -	
				-	× ×					
8.00 - 9.00 8.00 - 9.00	B19 D20			 -		7 7 1 1			8.0 —	
8.00 - 8.45	SPT (C)	N=55		[×					
	N=55	(7,7/10,14,14,17)		(3.00)	×				8.5 -	
				<u> </u>	X					
9.00 - 10.00	B21			F	×				9.0 —	
9.00 - 10.00 9.00 - 9.45	D22 SPT (C)	N=58		[×					
5.00 5.43	N=58	(6,8/11,13,18,16)		-	X				9.5 -	
				-	X-1					
			14.50	10.00	X					
			14.56	10.00		Continued on Next Page Water Added Wate	r Ctril	e - Gener	al	
Remarks						From (m) To (m) Struck at (m) Ca	sing to (m) Time (min)	Rose to (n	
						2.40 4.60	2.40	20 20	1.60 2.00	
								g Details		
						To (m) Diam (mm) From (m) 10.00 200	To (m) Tin	ne (hh:mm	
Cable Percussi	ion terminated	upon reaching scheduled	depth.							

		A		1	Project				Bor	ehole	
O	<u>.</u> C /	/ \			20-087			pe Housing Development		BH06	·
	DO	20			Coordi		Client:		ςI	neet 2	of 2
	- 3			y	557420	0.50 L	BMOR				
Method:					1		Client's	s Representative:	Sca	le: 1:	:50
Cable Percussion	on				574450	6.90 N	MHL &	Associates Ltd	Dri	ller: A	Δ
Plant:							Dates:				-
Pilcon						5 mOD				ger: №	1N
Depth	Sample / Tests	Casing Depth	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill	
(m) 10.00 - 10.45	SPT (C)	(m)	(m)	N=59	(MOD)	(Trickness)		End of borehole at 10.000m	-		
	N=59			(8,10/14,11,17,17)		-					
						-					10.5 —
						-					
						<u>-</u>					11.0 —
						-					11.0
						-					
						-					11.5 —
						-					1
						-					12.0 —
						-					=
						-					12.5 —
						-					
						-					120
						_					13.0 —
						-					
						-					13.5 —
						-					
						-					14.0 —
						[1 3
											14.5 —
						-					
						-					=
						-					15.0 —
						-					1
						_					15.5
						-					=
						-					16.0 -
						-					
						-					16.5
						-					10.5
						-					
						-					17.0
						-					
											17.5
						-					
						-					18.0 —
						-					
						[18.5 —
						-					10.5
						<u>-</u>					=
						-					19.0 —
						Ē					
						_					19.5
						<u>-</u>					=
						-			\dashv		\vdash \dashv
Remarks					<u> </u>			Water Added Water St			Ш
								From (m) To (m) Struck at (m) Casing to 2.40 2.40 2.40		Time (min) Ro	1.60
								4.60		20	2.00
								Casing Details Chisell To (m) Diam (mm) From (m) T	ling [To (m)		(hh:mm)
Cabla Dem		انما		annahing sels 1.1.1.1	الديم ال			10 (III) Diam (IIIII) From (III) 1 10.00 200	~ (III)	, illie	(analiill)
cable Percussion	ı cerminat	lea u	pon	reaching scheduled o	aeptn.						

APPENDIX D

Site Investigation Trial Pit Logs

			20-087	t No.:	_	Name: De Housing Development			Ir	iai Pit TP	No.:
	hae	n l		inates:	Client:						
	Dyc		55721	8.29 E	BMOR					sneet	1 of 1
Method:			57481	8.78 N		Representative:			Sc	ale:	1:20
Excavation Plant:				d Level:	MHL &	Associates Ltd			Dr	iver:	TW
Kobelco E13!	5SR			1 mOD	28/09/	2020			Lo	gger:	MN
Depth (m)	Sample / Test	s Field Records	Level	Depth (m) (Thickness)	Legend		Description		Water		
(m) 0.40 - 0.90 0.40 - 0.90	B1 D2		(mOD)	(0.40) - (0.40) - 0.40	1. 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TOPSOIL: Soft dark brown sligh low cobble content and frequer from light brown becoming red gravelly very silty CLAY with low Sand is fine to coarse. Gravel is Cobbles and boulders are most	nt rootlets, moist. dish brown (little o	range mottling) sand boulder content, ma angular to subrounc	dy Dist.		0.5 —
1.50 - 2.00 1.50 - 2.00 2.00 - 2.40	B3 D4		40.41	(1.60)							1.5 —
2.00 - 2.40	D6			- (0.40)		Brown slightly clayey gravelly ve moist becoming wet. Sand is fir subangular to subrounded. Cob sandstone, siltstone and some of	ne to coarse. Grave bles are subangula	I is fine to coarse,	., 		-
2.50 - 3.00 2.50 - 3.00	B7 D8	Water seepage from 2.4m, no rise after 20 minutes.	40.01	2.40		Very stiff reddish brown slightly with low cobble content, moist. coarse, subangular. Cobbles are occasional quartz.	Sand is fine to coa	arse. Gravel is fine to	SILT		2.5 —
			39.41	- 3.00		End o	f trial pit at 3.000m				3.0
Remarks								Caulte	Stabilit	v:	
arks								Strikes:	Slight s		5
							Struck at (m): 2.40	Remarks: Water seepage from 2.4m, no rise after			1.30
								2.4m, no use after	vviath	-	1.3∪

			Project			: Name:			Tr	ial Pit	
			20-087		_	oe Housing Development				TP	02
	Doec)	Co-ord	inates:	Client:					Sheet	1 of 1
			55727	9.02 E	BMOR						
Method:			57478	0 06 N	Client's	Representative:			Sc	ale:	1:20
Excavation			3/4/6	9.90 N	MHL &	Associates Ltd			D	river:	TW
Plant:				d Level:	Date:				\vdash		
Kobelco E1	35SR			3 mOD	28/09/	2020				ogger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water		
()			(11102)	-		TOPSOIL: Soft dark brown slight	ly gravelly sandy ve	ery silty CLAY with	<u> </u>	+	
				- - (0.30)		frequent rootlets, moist.					-
				- (0.30)							-
			42.93	- 0.30		O					4
				- (0.20)	×.°×° ×	Orange brown slightly silty very occasional rootlets, moist. Sand					
0.50 1.00	D1		42.73	-	×.°×° ×	subangular. Cobbles are subang	ular, sandstone, sil	tstone and occasional			0.5 —
0.50 - 1.00 0.50 - 1.00	B1 D2		42.73	- 0.50 -	O. U.	quartz. Brown silty very gravelly SAND v	with low cobble and	d small boulder conte	nt,		0.5
				-	0O	moist. Sand is fine to coarse. Gr	avel is fine to coars	e, subangular to			
				-	0.00	subrounded. Cobbles are subanguartz.	iguiar, sandstone, s	litstone and occasiona	.'		-
				-	Q×.0,						-
				-	0,00						-
				-	0.0°						1.0
				-	X, 0, X						
				-	X:°0.×						
				-	××××						
				-	× ŏ.×						
				- - (1.90)	V 8 .X						-
1.50 - 2.00	В3			(1.90)							1.5 —
1.50 - 2.00	D4			-							4
				-	0.00						
				-	Q×.0,						
				-	0.00						
				-							
				_	× 0 ×						2.0
				-	× Ö.X						-
				-	×XXX						-
				-	×8.×						_
			40.83	- 2.40	0x.×						
			40.03	- 2.40	0.0	Dark brown silty very gravelly SA content, moist t wet. Sand is fin					
				-	0 x 0	subangular to subrounded. Cob					2.5 —
2.60 - 3.10 2.60 - 3.10	B5 D6			-	0.00	and occasional quartz.					
2.00 - 3.10				=	Q×.0,						-
				-	0×0						-
				-							-
				- - (1.20)							3.0
				- (2.20)	X, O X						
				_	×°Ö.×						
				-	× 8 ×						7
				-	×8.×						
				_	0 × 0						-
				-	0.X						3.5 —
			39.63	3.60	0.00	Fig. 4 - 4	f trial pit at 3.600m		\dashv		4
				-		E110 01	ι ιιαι μιι αι 3.000Π				
				_							_
				-							
				-							
									土	\pm	
Remarks							Water	Julikes.	Stabilit		
							Struck at (m):	Remarks:	šlight s	palling	
								None Encountered			
									Width	:	1.30
									Length	1:	3.80

6	<u> </u>		Project		_	: Name: De Housing Development			Tr	ial Pit	No.:
U	hae	5	Co-ord		Client:						
	byc		55736	6.05 E	BMOR					Sneet	1 of 1
Method: Excavation			57483	7.00 N		Representative:			Sc	ale:	1:20
Plant:			Ground	d Level:	Date:	Associates Ltd			D	river:	TW
Kobelco E135S	R			4 mOD	28/09/	2020			Lo	gger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water		
(m) 0.60 - 1.10 0.60 - 1.10 1.60 - 2.10 1.60 - 2.10	B1 D2		43.94 43.64	(Inickness) - (0.30) - (0.30) - (0.30) - (0.60	24 CAN	TOPSOIL: Soft dark brown slight cobble content and frequent ro Firm light greyish brown sandy content and occasional rootlets to coarse, subangular. Cobbles a occasional quartz. Firm becoming stiff orange browgravelly very silty CLAY with low boulder content, moist. Sand is subangular. Cobbles and boulded occasional quartz.	gravelly very silty (, moist. Sand is fin- are subangular, sar wn and light greyisi t to medium cobble fine to coarse. Gra	ELAY with low cobble e to coarse. Gravel is dstone, siltstone and n brown mottled sand e content nd low sma vel is fine to coarse,	fine		1.5 —
2.50 - 3.00 2.50 - 3.00		Water seepage from 2.8m, no rise after 20 minutes.	41.94	- 2.30		Brown silty very gravelly SAND of Sand is fine to coarse. Gravel is are subangular, siltstone, sands	fine to coarse, mostone and occasiona	itly subangular. Cobbi al quartz.	des		2.5 —
						End o	f trial pit at 3.000m				3.5 —
Remarks							Water	Strikes:	Stabili		,
							Struck at (m):	Remarks:	Slight	phailing	5
							2.80	Water seepage from 2.8m, no rise after 20 minutes.	Width		1.30 4.40

6	^ ^		Project		_	: Name:			T	rial Pi	
U	had	.	20-087 Co-ord		Client:	pe Housing Development					204
	Dyci		55739		BMOR					Sheet	1 of 1
Method:			57472			Representative:			S	cale:	1:20
Excavation						Associates Ltd				river:	TW
Plant: Kobelco E135S	iR			d Level: 5 mOD	Date: 25/09/	2020			L	ogger	: MN
Depth	Sample / Tests	Field Records	Level	Depth (m)	Legend		Description		100		*
(m)			(MOD)	(Thickness) - - - (0.30)		TOPSOIL / SUBSOIL: Soft dark b sandy silty CLAY with occasiona			- 3	•	_
0.40 - 0.90 0.40 - 0.90	B1 D2		37.66	- 0.30 - - -	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Firm light greyish brown and or gravelly silty CLAY with low cobl decayed rootlets, moist. Sand is subangular to subrounded. Cob	ble content and oc fine to coarse. Gr	casional partially avel is fine to coarse,			0.5
				- (0.60) - - -							- -
0.90 - 1.15 0.90 - 1.15	B3 D4		37.06	0.90 (0.25)		Light brown clayey silty sandy G Sand is fine to coarse. Gravel is			noist		1.0
1.30 - 1.80 1.30 - 1.80	B5 D6		36.81	- 1.15 - - - -	× 0 × 0	Stiff orange brown mottled ligh gravelly silty CLAY with low cobl					- -
				(1.25)							1.5 —
				- - - - - - -	**************************************						2.0
2.40 - 2.90 2.40 - 2.90	B7 B8	Water seepage from 2.5m, slight pooling after 20 minutes.	35.56	- 2.40 - - - - - (0.60)		Yellowish brown slightly clayey medium to high cobble and sm: coarse. Gravel is fine to coarse, are subangular, sandstone, silts	all boulder conten angular subangula	t, wet. Sand is fine to ar. Cobbles and bould			2.5 —
			34.96	3.00		End o	f trial pit at 3.000m	1			3.0
				- - - -							- -
				- - - -							3.5 —
				-							_
Remarks							Struck at (m):	Strikes: Remarks:	Stabil Slight grave	spallin	g in
							2.50	Water seepage from 2.5m, slight pooling after 20 minutes.	Widt Lengt		1.30 4.70

	*		Projec	: No.:		Name:			Tr	ial Pit	No.:
C	JC A	_	20-087			oe Housing Development				TP	05
	uge	J	Co-ord		Client: BMOR				9	Sheet	1 of 1
Method:			55732			Representative:			Sc	ale:	1:20
Excavation			57465	3.08 N		Associates Ltd					
Plant:					Date:				-	iver:	
Kobelco E135	5SR			2 mOD	24/09/	2020				gger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water		
	B1 D2	Steady inflow from 1.65m, rose from base to 1.65m depth after 20 minutes.		(Thickness) - (0.25) - (0.25 - (0.55) - (0.80 - (0.90)	Legend A Company of the Company of	TOPSOIL: Soft dark brown slightly frequent rootlets, moist. Firm light greyish brown with a lislightly gravelly slity CLAY with le coarse. Gravel is fine to coarse, subangular to subrounded, sand Brown with a little orange brown gravelly SAND with low cobble a coarse. Gravel is fine to coarse, subulders are mostly subangular,	ly sandy slightly g little orange brow ow cobble conten subangular to sub listone, siltstone a n mottling slightly nd small boulder subangular to sub	n mottling slightly sa t, moist. Sand is fine rounded. Cobbles ar nd occasional quartz clayey slightly silty v content. Sand is fine rounded. Cobbles an	nndy to e		0.5 - 1.0 2.0
				-							3.0 —
				_							
				[
											3.5 -
				_							
				_							
				[
				-							
				-						-	
Remarks							Water	Strikes:	Stabilit	y:	
							Struck at (m):	Remarks:	Spalling	g belov	w 0.8m
						-	1.65	Steady inflow from	-		
								1.65m, rose from	Width	:	1.15
								base to 1.65m depth			

			Project			: Name:			Tri	al Pit No.:
(20-087			oe Housing Development				TP06
	Dge)	Co-ord	inates:	Client:				S	heet 1 of 1
		<u> </u>	55747		BMOR					
Method:			57463	4 O1 N		s Representative:			Sca	ale: 1:20
Excavation						Associates Ltd			Dr	iver: TW
Plant: Kobelco E13!	5SR			d Level: O mOD	Date: 25/09/	2020			Lo	gger: MN
Depth			Level	Depth (m)		2020				38611
(m)	Sample / Tests	Field Records	(mOD)	(Thickness)	Legend		Description		Water	
				(0.25)		TOPSOIL: Soft dark greyish brov frequent rootlets, moist.	wn sandy CLAY with	occasional gravel an	d	_
0.30 - 0.80 0.30 - 0.80	B1 D2		28.55	0.25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Soft becoming light brownish gu content. Sand is fine to coarse. subrounded. Cobbles are suban quartz.	Gravel is fine to coa	arse, subangular to	al	0.5 —
4.00.4.50			28.00	- 0.80	\$0.50 \$0.50	Firm brown gravelly very silty wood low small boulder content, moi coarse, subangular to subround	ist. Sand is fine to co	oarse. Gravel is fine to		-
1.00 - 1.50 1.00 - 1.50	B3 D4			- (0.90)		subangular, sandstone.				1.0 —
			27.10		\$0.00 \$0.00					1.5 —
			27.10	- 1.70 - - -		End o	of trial pit at 1.700m			
				 - -						2.0 —
				- - -						-
				-						2.5 —
				- - -						
				- - - -						3.0 —
				- - -						_
				- - - -						3.5 —
				-						_
Remarks									Stability Slight sp	y: palling below
							Struck at (m):	Remarks: None Encountered	0.8m Width:	: 1.15
									Length	: 2.30

	*		Project	: No.:	Projec	t Name:	Trial	Pit No	o.:
),C /\		20-087			pe Housing Development		TP07	
	Dge		Co-ord		Client:		She	eet 1 c	of 1
Method:			55742	2.73 E	BMOR	s Panyasantativa	Saci	e: 1:1	20
Excavation			57456	7.01 N		s Representative: Associates Ltd			
Plant:			Ground	d Level:	Date:	ASSOCIATES Etu	Driv	er: TV	٧
Kobelco E135	5SR			2 mOD	24/09/	2020	Logg	er: M	N
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
(,			((0.15)		TOPSOIL / MADE GROUND: Soft greyish brown slightly gravelly sandy silty clay with frequent rootlets, moist.	Ħ		
0.15 - 0.50	B1		25.67	0.15		MADE GROUND: Soft light brown slightly gravelly sandy very silty Clay with	-		_
0.15 - 0.50	D2			-		low cobble and small boulder content and occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles			_
				(0.35)		and boulders are subangular, sandstone, siltstone and occasional quartz.			
			25.32	- 0.50				(0.5 —
			23.32	- (0.20)		FORMER TOPSOIL: Soft dark greyish brown slightly sandy slightly gravelly silty CLAY with occasional partially decayed rootlets, moist.		· ·	
0.70 - 1.20	В3		25.12	- 0.70					_
0.70 - 1.20	B4			- 3.70	, × o	Firm light grey with a little orange brown mottling slightly gravelly sandy silty CLAY with low cobble content, moist. Sand is fine to coarse. Gravel is			_
				-	× × 0	fine to coarse, angular subrounded. Cobbles are subangular, sandstone, siltstone and occasional quartz.			-
				-	× × 0			1	1.0
				-		STONE FIELD DRAIN - Along south side of TP (1.1m - 1.7m)			-
				- (0.90) -	× × 0	STONE FILED DIVAIN - Along South Side of FF (1.1111 - 1.1111)			_
				-	×××°°				-
				-	× × × 0				-
				-	~ ^ o			1	1.5 —
		Rapid water inflow from	24.22	1.60	× × 0	Firm grey sandy gravelly silty CLAY with low cobble content, moist to wet.			-
1.70 - 2.20	В5	west end of field drain at 1.6m. Rose to 0.45m after		-	× × ·	Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded.			-
1.70 - 2.20	D6	20 minutes.		-	× × 0	Cobbles are subangular, sandstone, siltstone and occasional quartz.			-
				(0.60)	× × 0				-
				[× × 0			2	2.0
				-	× × 0				-
2.20 - 2.40 2.20 - 2.40	B7 D8		23.62	2.20	* <u>***</u>	Firm to stiff light grey to grey and locally pale yellow slightly sandy gravelly	$\left\{ \ \right\}$		_
2.20 - 2. 4 0	50			-	**************************************	silty CLAY with low cobble and small boulder content, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are			-
2.40 - 2.80 2.40 - 2.80	B9 D10			-	<u>~~</u> 0	angular to subrounded, sandstone, siltstone, limestone and occasional quartz.			-
0 2.00	510			- (0.60) -	-0.50 -0.50 -0.50	quoi cc.		2	2.5 —
				-					-
				-	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				-
			23.02	- 2.80 -	20.0	End of trial pit at 2.800m	1		-
				-					-
				- -				3	3.0
				-					-
				-					-
									-
									3.5 —
				-				3	,
				-					_
				-					_
				-					_
Remarks				l	I	Water Strikes: Sta	bility:		
						Struck at (m): Remarks: Side	es colla		
						1.60 Rapid water inflow		undwa	
							idth:	1.3	30
							ngth:	4.7	′0

	*		Projec	: No.:		: Name:	Tria	al Pit	No.:
	JC		20-087			pe Housing Development		TP	08
	Dge			inates:	Client:		S	heet	1 of 1
Method:		<u></u>	55735	5.03 E	BMOR Client's	s Representative:	Sca	ıle:	1:20
Excavation			57451	3.10 N		Associates Ltd			
Plant:			Groun	d Level:	Date:		Dri	ver:	TW
Kobelco E13	5SR		25.3	0 mOD	24/09/	2020	Log	ger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
0.20 - 0.70 0.20 - 0.70	B1 D2		25.10	- (0.20)		TOPSOIL: Soft dark brown slightly sandy slightly gravelly silty CLAY with frequent rootlets, moist. Possible MADE GROUND: Firm light greyish brown with some reddish brown slightly sandy slightly gravelly to gravelly silty CLAY with low cobble content and occasional rootlets, moist becoming wet. Sand is fine to			
		Rapid water inflow from 0.8m, rose to 0.6m after	24.60	- (0.50)		coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are subangular to subrounded, sandstone, siltstone and occasional quartz. Stiff reddish brown sandy gravelly clayey SILT with low cobble content, moist. Sand is fine to coarse. Gravel is fine to coarse, subangular. Cobbles are subangular, sandstone, siltstone and occasional quartz. Sand is fine to			0.5
1.00 - 1.50 1.00 - 1.50	B3 D4	20 minutes.		(1.00)		coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are subangular to subrounded, sandstone, siltstone and occasional quartz. Possible former STONE FIELD DRAIN. Angular and tabular boulder-sized slabs of purple siltstone.			1.0
			23.60	1.70		End of trial pit at 1.700m			1.5 -
				-					2.0 —
				-					
				- - -					2.5 —
				-					
				- - -					3.0 —
				- - -					
				-					
				- - - -					3.5 —
				- - -					
Pamarks							hilit	,.	
Remarks						Struck at (m): Remarks:	ability les co		ng
						0.6m after 20	/idth:		1.60 4.50

			Project			: Name:			Tri	ial Pit	No.:
) <u>C</u> _/		20-087			be Housing Development				TP	09
	uge		Co-ord		Client: BMOR				9	Sheet	1 of 1
Method:		<u> </u>	55741	2.10 L		s Representative:				ale:	1:20
Excavation			57444	/ 1∩ N		Associates Ltd					
Plant:			Ground		Date:				-	iver:	
Kobelco E135	SSR				24/09/	2020				gger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water		
			24.22	0.20	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOPSOIL / SUBSOIL: Soft dark be sandy slightly gravelly silty CLAY Firm becoming stiff light greyish slightly sandy slightly gravelly si occasional partially decayed roc is fine to coarse, subangular to subrounded, sandstone, siltstor	with frequent roo n brown with a little lty CLAY with low cotlets, moist. Sand subrounded. Cobbl	e orange brown mot obble content and is fine to coarse. Gra les are subangular to	vel		
0.60 - 1.10 0.60 - 1.10	B1 D2			- (1.20) - (1.20) (1.20)							1.0
1.70 - 2.20	B3		23.02	- - 1.40 - - -		Purplish brown silty fine SAND v silt and slightly gravelly fine to r			indy		1.5 —
1.70 - 2.20	D4			- (1.30) (1.30)							2.0 —
2.70 - 3.20 2.70 - 3.20	B5 D6	Rapid water inflow from 2.7m, rose to 2.6m after	21.72	2.70	X X X X X X X X X X X X X X X X X X X	Brown slightly silty very sandy of is fine to coarse. Gravel is fine to subangular, sandstone, siltstone	o coarse, subangula	ar. Cobbles are	and		2.5 —
		20 minutes.	21.22	- (0.50) - - - - - 3.20		End o	f trial pit at 3.200m				3.0
				- - - - - - - - - - - - - -		Lind o					3.5 —
								1	6: :::		
Remarks							Water	Strikes:	Stabilit		n a
							Struck at (m):	Remarks:	Sides co	oiiapsi 	ng
							2.70	Rapid water inflow from 2.7m, rose to 2.6m after 20	Width	:	2.60
								2.6m after 20 minutes.	Length		4.40

6	*		Project			: Name:			Tri	al Pit I	No.:
	O _C		20-087			oe Housing Development				TP1	.0
	DOC	0	Co-ord	inates:	Client:				S	heet 1	L of 1
			55725		BMOR						
Method:			57474	9 06 N		Representative:			Sca	ıle:	1:20
xcavation						Associates Ltd			Dri	ver:	TW
Plant:				d Level:	Date:						
Kobelco E13	35SR	Т		1 mOD	25/09/	2020				ger:	IVIIN
(m)	Sample / Tests	Field Records	(mOD)	(Thickness)	Legend		Description		Wate		
Depth		Steady water inflow from 1.45m, rose to 1.6m after 20 minutes.	Level	Depth (m) (Thickness)		TOPSOIL: Soft dark brown slight rootlets, moist. Firm light greyish brown with a gravelly sandy very silty CLAY w brown partially decayed rootlet Greyish brown slightly clayey slicobble content, moist becoming	little orange brown ith low cobble conts, moist.	n mottling slightly cent and occasional dy GRAVEL with low	nt lity		1.0 —
				-							3.0
				- -							Ⅎ
				-							\dashv
				_							-
				-							-
				-							3.5 —
				- -							
				-							
				_							7
				-							1
				<u>-</u>							+
Remarks							Water	Juliaco.	Stability		
							Struck at (m):		Slight sp 1.0m	alling	below
							1.45	Steady water inflow from 1.45m, rose to 1.6m after 20	Width:		1.15
								minutes.	Length		2.20

6			Project	: No.:	1	t Name:	Tria	l Pit	No.:
C)_C _/\		20-087			oe Housing Development		TP:	11
	Dgec			inates:	Client:		Sł	neet	1 of 1
Method:		<u> </u>	55731	3.07 E	BMOR	s Representative:	Sca	lo:	1.20
Excavation			57471	9.01 N		Associates Ltd	-		1:20
Plant:			Ground	d Level:	Date:	, isoboliates Eta	Dri	ver:	TW
Kobelco E13	5SR			3 mOD	25/09/	2020	Log	ger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water		
()			37.58	(0.25)	\$ 2 P. 0.	TOPSOIL: Soft dark brown slightly sandy slightly gravelly silty CLAY with frequent rootlets, moist. Firm light greyish brown slightly sandy slightly gravelly silty CLAY with low			
0.50 - 1.00 0.50 - 1.00	B1 D2		37.43	(0.15) - 0.40 (0.70)		cobble content and occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, subangular. Cobbles are subangular, sandstone, siltstone and occasional quartz. Stiff brown / orange and light grey mottled sandy gravelly very silty CLAY with low cobble content, moist. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular, sandstone, siltstone and occasional quartz.			0.5 —
			36.73	1.10		Brown clayey silty sandy GRAVEL with low to medium cobble content,	+		-
			36.53	(0.20)	0,0 0,0	moist. Sand is fine to coarse. Gravel is fine to coarse, subangular.			
1.60 - 2.10 1.60 - 2.10	B3 D4			-		Stiff orange brown and light grey to grey mottled slightly sandy gravelly silty CLAY with low cobble content, moist. Sand is fine to coarse. Gravel is fine to coarse, subangular. Cobbles are subangular, sandstone, siltstone and occasional quartz.			1.5 -
2.30 - 2.80 2.30 - 2.80	B5 D6			- (1.50) - (1.50) 					2.0 —
2.80 - 3.30 2.80 - 3.30	B7 D8		35.03	- 2.80 (0.50)	X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	Very stiff light grey mottled orange brown slightly sandy slightly gravelly silty CLAY, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are subangular, sandstone, siltstone and occasional quartz.			3.0 —
					× × × ×				-
			34.53	3.30		End of trial pit at 3.300m			3.5 — - -
						1	<u> </u>		
Remarks						vater strikes.	bility	:	
						Struck at (m): Remarks:	od 		
						None Encountered	idth:		1.20
						Le Le	ngth:		4.20

6			Project 20-087		_	t Name: pe Housing Development			Tr		No.:
	hae	n	Co-ord		Client:						
	byc		55734	1.78 E	BMOR				;	sheet	1 of 1
Method:			57461	2 / / N		s Representative:			Sc	ale:	1:20
Excavation						Associates Ltd			Dı	iver:	TW
Plant: Kobelco E135	SR			d Level: B mOD	Date: 24/09/	2020			Lo	gger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water		H
(111)			27.18	(0.25) - 0.25		TOPSOIL: Soft dark brown beco gravelly silty CLAY with frequen Firm becoming stiff light brown slightly sandy slightly gravelly v	t rootlets, moist. ish grey with a little ery silty CLAY with	e orange brown mottli low cobble content an	ng d		-
0.70 - 1.20 0.70 - 1.20	B1 D2			(1.15)		occasional rootlets, moist. Sand angular to subrounded. Cobble			,		0.5 —
1.60 - 2.10 1.60 - 2.10	B3 D4		26.03	1.40		Stiff purplish brown sandy gravi moist. Sand is fine to coarse. Gi subrounded. Cobbles are angul	avel is fine to coar		nt,		1.5 —
2.50 - 2.70 2.50 - 2.70	B5 D6		24.93	- 2.50		Brown slightly clayey slightly sil content and with a thin dark pa	rtially cemented ir	on pan layer near the			2.0
2.70 - 3.10 2.70 - 3.10	B7 D8	Steady water inflow from 2.8m, no rise after 20 minutes.		- - - (0.60) - -		upper surfaces, moist becoming to coarse, angular to subrounde			• •	2	3.0
			24.33	3.10		End o	f trial pit at 3.100m		\dashv		-
				- - - - - - -							3.5 —
				-				-			_
Remarks							Water Struck at (m): 2.80	Dama adam	Stabilit Sides c below :	ollapsi	ng
							2.00	from 2.8m, no rise after 20 minutes.	Width Length		1.20 5.50

(*		Project	t No.:	Project	Name:			Tri	al Pit No.:
	O _C		20-087			oe Housing Development				TP13
	Dge	O	Co-ord		Client:				S	sheet 1 of 1
Matha-I			55741		BMOR	. Donnesoustative:				
Method: Excavation			57450	9.00 N		s Representative: Associates Ltd			Sca	ale: 1:20
Plant:			Ground	d Level:	Date:	, associates Eta			Dr	iver: TW
Kobelco E1	35SR			9 mOD	24/09/	2020			Lo	gger: MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water	
(111)			(חסטוו)	-		TOPSOIL: Soft dark brown slight	tly sandy slightly gra	evelly silty CLAY with		
				- (0.20) -		frequent rootlets, moist.				-
			25.39	0.20		Possible MADE GROUND: Firm I			_	_
				-		brown slightly sandy slightly gra content and occasional rootlets			oie	_
				-		coarse. Gravel is fine to coarse, subangular to subrounded, sand				
0.50 - 1.00 0.50 - 1.00	B1 D2			-		G	,	, , , , , , , , , , , , , , , , , , , ,		0.5 —
				ļ						_
				-						
				-						
				- - (1.50)						
				-						1.0
				-						-
				-						
				-						
				-						
				-						1.5 —
				-						
1.70 - 2.20 1.70 - 2.20	B3 D4		23.89	1.70	× ×	Brown slightly gravelly silty to v				
					× × ×	occasional interbeds of slightly Sand is fine to medium. Gravel i				_
				-	× × ×	Cobbles are angular to subangu quartz.	ılar, sandstone, silts	tone and occasional		
				-	× ×	4				2.0
				-	× × ×					-
				-	^*. * ^ *** *					-
					^x * *					_
				- - (1.50)	^x * *					_
		Seepage from 2.5m, no rise after 20 minutes.		- ` ´	× × ×					2.5 —
		rise diter 25 minutes.		-	× × ×					-
2.70 - 3.20 2.70 - 3.20	B5 D6			-	* * * * * * *					
				-	* * *					
				-	*.**.** *.**					-
				-	x.~X.					3.0
				-	*.°×° *					-
			22.39	3.20						-
				-		End o	f trial pit at 3.300m			-
				-						-
				-						3.5 —
				-						
				-						-
				_						-
				-						-
								ī		
Remarks							Water	Junico.	Stability Snalling	y: ; below 1.7m
							Struck at (m):	Remarks:	ShaiiiiB	PCIOM T'\III
							2.50	Seepage from 2.5m, no rise after 20	Width	: 1.20
								minutes.	Length	

			Project			: Name:			Tr	ial Pit No.:
) C		20-087			oe Housing Development				TP14
	bge)	Co-ord	inates:	Client:			-		Sheet 1 of 1
	- 5			Е	BMOR					5110001 1011
Method:			•		Client's	Representative:			Sc	cale: 1:20
Excavation				N	MHL &	Associates Ltd			<u> </u>	
Plant:			Ground	d Level:	Date:					river: TW
Kobelco E135	SSR				25/09/	2020			Lo	ogger: MN
Depth	Sample / Tests	Field Records	Level	Depth (m)	Legend		Description		Water	
(m)	Sample / Tests	Tiela necoras	(mOD)	(Thickness)	\/\\\\/	TOPSOIL: Soft dark brown slight		avally CLAV with	×	
				(0.20)		frequent rootlets, moist.	iy sandy siightiy gir	aveny CLAI WITH		
				0.20						
				- 0.20	200	Firm becoming stiff greyish brow gravelly to gravelly sandy very si	wn becoming orang	ge brown mottled slig	htly	
					<u> </u>	gravery to gravery sarruy very si	iity CLAT With low t	obbie content, mois		1 7
					× × 0					-
0.50 - 1.00	B1			-	× 0 × 0.					0.5 —
0.50 - 1.00	D2			-	<u>.</u> ° <u>×</u> °					
				(1.00)	× × × 0					
				- (1.00)	× × ×					
					×					
					<u>x-0</u>					-
				-	X					1.0
				-	× × × 0					-
				- 1.20	<u> </u>			_		
1.30 - 1.80	D2				× × · · · · ·	Brown with a little orange brown sandy GRAVEL with low cobble of			ery	
1.30 - 1.80	B3 D4			-	* X:					
		Water seepage from			·				3	<u> </u>
		1.4m, no rise after 20 minutes.		- - (0.70)	× × × · ·					1.5
				(0.70)	×					-
					<u> </u>					
				-	××					
				-	×					
				1.90		End of	f trial pit at 1.900m			
				_						2.0
				-						-
				-						_
				-						
				-						
				-						2.5 —
				-						-
				ŧ						-
				-						-
				_						3.0
				-						3.0
				-						7
				-						-
				ŧ						-
				-						-
				-						3.5 —
				_						
				-						7
				-						
										-
				-						-
									_	
Remarks		•					Water	Strikes:	Stabili	ty:
								Danie de la constant	Slight	palling below
							Struck at (m): 1.40		1.2m	
							1.40	1.4m, no rise after	Width	n: 1.20
								20 minutes.	Lengtl	1: 2.90

APPENDIX E

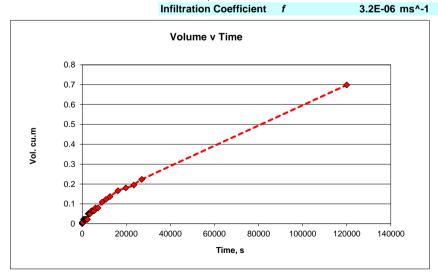
Site Investigation Infiltration Test Data

INFILTRATION TEST DATA

OCB Geotechnical Ltd

Project Name	Clo	ghroe Housing Developme	Date	25/09/20	
Project No.		20-087		Location	TP05
Easting	557325.98	Northing	574653.08	Level	29.42

length, m I_base, m I_eff, m 2.4 1.2 1.8 1.2


b, m (wid

depth, m d_eff, m 1.7 0.645

Start

-						1.8
	Volume	Fall, m	depth	Time, sec	Measure,	Time, min
]	0	0	1.055	0	0.645	0
	0.00288	0.002	1.053	30	0.647	0.5
	0.00432	0.003	1.052	45	0.648	0.75
	0.00576	0.004	1.051	60	0.649	1
	0.0072	0.005	1.05	120	0.65	2
	0.0072	0.005	1.05	180	0.65	3
	0.0072	0.005	1.05	240	0.65	4
	0.0072	0.005	1.05	300	0.65	5
	0.0216	0.015	1.04	600	0.66	10
]	0.0216	0.015	1.04	900	0.66	15
	0.0216	0.015	1.040	1200	0.660	20
	0.0216	0.015	1.040	1500	0.660	25
	0.0216	0.015	1.040	1800	0.660	30
	0.0216	0.015	1.04	2100	0.66	35
	0.0216	0.015	1.040	2400	0.660	40
	0.0504	0.035	1.020	2700	0.680	45
	0.0504	0.035	1.02	3000	0.68	50
	0.0504	0.035	1.020	3300	0.680	55
	0.0504	0.035	1.020	3600	0.680	60
	0.0648	0.045	1.010	4200	0.690	70
	0.0648	0.045	1.010	4800	0.690	80
	0.0648	0.045	1.010	5400	0.690	90
1/4	0.0792	0.055	1.000	6000	0.700	100
1	0.0792	0.055	1.000	7200	0.7	120
1	0.108	0.075	0.980	9000	0.72	150
1	0.1224	0.085	0.970	10800	0.73	180
]	0.1368	0.095	0.960	12600	0.74	210
]	0.1656	0.115	0.940	16200	0.76	270
1	0.18	0.125	0.930	19800	0.77	330
1	0.1944	0.135	0.920	23400	0.78	390
1	0.2232	0.155	0.900	27000	0.8	450
3/4 1	0.6984	0.485	0.570	120000	1.13	2000

Area 1.44 m^2 50% Area_eff, a_{p50} 3.375 m^2 $V_{p75\cdot25 \; theory}$ volume 0.6966 m^3 $V_{p75\cdot25}$ volume 1.2384 $t_{p\,75\cdot25}$ time 114000 s

NOTES:

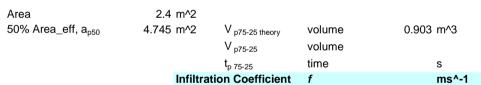
Last datapoint extrapolated from available data to facilitate an estimated Infiltration Coefficient calculation

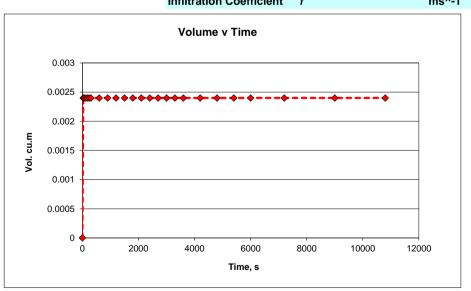
BRE TP05 05/10/2020

INFILTRATION TEST DATA

OCB Geotechnical Ltd

Project Name	Cloghroe Housing Development			Date	25/09/20
Project No.	20-087			Location	TP06
Easting	557475.99	Northing	574634.01	Level	28.804


length, m I_base, m I_eff, m 2.3 b, m (widt 2 2.15


1.2

depth, m 1.5 d_eff, m 0.7

Start

Time, min		Time, sec	depth	Fall, m	Volume
0	0.700	0	0.8	0	0
0.5	0.701	30	0.799	0.001	0.0024
0.75	0.701	45	0.799	0.001	0.0024
1	0.701	60	0.799	0.001	0.0024
2	0.701	120	0.799	0.001	0.0024
3	0.701	180	0.799	0.001	0.0024
4	0.701	240	0.799	0.001	0.0024
5	0.701	300	0.799	0.001	0.0024
10	0.701	600	0.799	0.001	0.0024
15	0.701	900	0.799	0.001	0.0024
20	0.701	1200	0.799	0.001	0.0024
25	0.701	1500	0.799	0.001	0.0024
30	0.701	1800	0.799	0.001	0.0024
35	0.701	2100	0.799	0.001	0.0024
40	0.701	2400	0.799	0.001	0.0024
45	0.701	2700	0.799	0.001	0.0024
50	0.701	3000	0.799	0.001	0.0024
55	0.701	3300	0.799	0.001	0.0024
60	0.701	3600	0.799	0.001	0.0024
70	0.701	4200	0.799	0.001	0.0024
80	0.701	4800	0.799	0.001	0.0024
90	0.701	5400	0.799	0.001	0.0024
100	0.701	6000	0.799	0.001	0.0024
120	0.701	7200	0.799	0.001	0.0024
150	0.701	9000	0.799	0.001	0.0024
180	0.701	10800	0.799	0.001	0.0024

NOTES:

Water level did not fall sufficiently to calculate an Infiltration Coefficient

BRE TP06 05/10/2020

INFILTRATION TEST DATA

OCB Geotechnical Ltd

Project Name	Cloghroe Housing Development			Date	25/09/20
Project No.	20-087			Location	TP10
Easting	557254.03	Northing	574749.06	Level	36.711

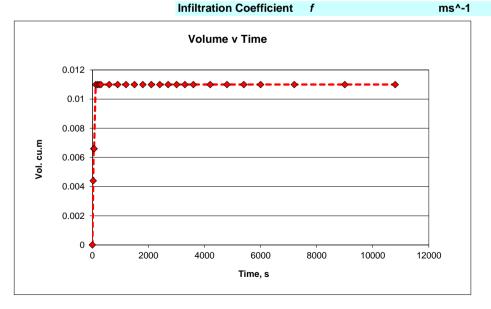
1.1

length, m I_base, m I_eff, m 2.2 b, m (widing 2 2.1

depth, m d_eff, m 1.6 0.6

Start

Time, min	Measure,	Time, sec	depth	Fall, m	Volume
0	0.585	0	1.015	0	0
0.5	0.587	30	1.013	0.002	0.0044
0.75	0.588	45	1.012	0.003	0.0066
1	0.588	60	1.012	0.003	0.0066
2	0.59	120	1.01	0.005	0.011
3	0.59	180	1.01	0.005	0.011
4	0.59	240	1.01	0.005	0.011
5	0.59	300	1.01	0.005	0.011
10	0.59	600	1.01	0.005	0.011
15	0.59	900	1.01	0.005	0.011
20	0.59	1200	1.010	0.005	0.011
25	0.59	1500	1.010	0.005	0.011
30	0.59	1800	1.010	0.005	0.011
35	0.59	2100	1.01	0.005	0.011
40	0.59	2400	1.010	0.005	0.011
45	0.59	2700	1.010	0.005	0.011
50	0.59	3000	1.01	0.005	0.011
55	0.59	3300	1.010	0.005	0.011
60	0.59	3600	1.010	0.005	0.011
70	0.59	4200	1.010	0.005	0.011
80	0.59	4800	1.010	0.005	0.011
90	0.59	5400	1.010	0.005	0.011
100	0.59	6000	1.010	0.005	0.011
120	0.59	7200	1.010	0.005	0.011
150	0.59	9000	1.010	0.005	0.011
180	0.59	10800	1.010	0.005	0.011


2.2 m^2 4.12 m^2

V _{p75-25 theory} V _{p75-25}

t_{p 75-25}

volume volume 0.693 m^3

time s

NOTES:

Water level did not fall sufficiently to calculate an Infiltration Coefficient

BRE TP10 05/10/2020

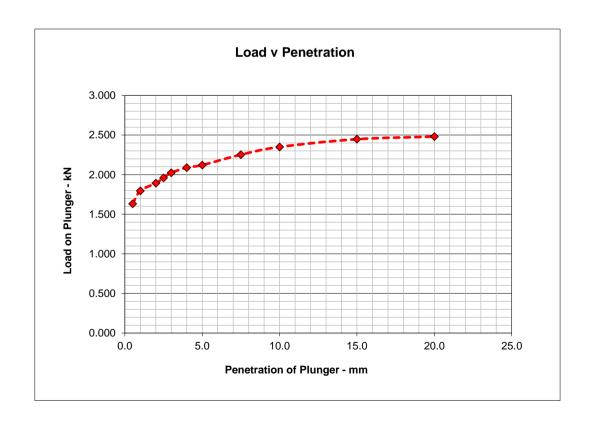
APPENDIX F

Site Investigation On-Site CBR Test Data

Project Name	Cloghroe Housing Development	Date	17/09/20
Project No.	20-087	Operator	GOC
Test Location	CBR1	Depth	0.385m

Penetration (mm)	Standard load (kg)	l _{2.5 =} Load at 2.5mm penetration 1370	x100
2.5	1370		
5	2055	Load at 5mm penetration	x100
7.5	2630	15 = 	X100
10	3180		
12.5	3600		

Penetration (mm)	Load Reading (Divisions)	Load Reading (kN)	Standard Load (Kg)	Load (Kg)	CBR (%)
0.5	40.0	1.305		133	
1	68.0	2.219		226	
2	140.0	4.569		466	
2.5	170.0	5.548	1370	566	41.30
3	270.0	8.812		899	

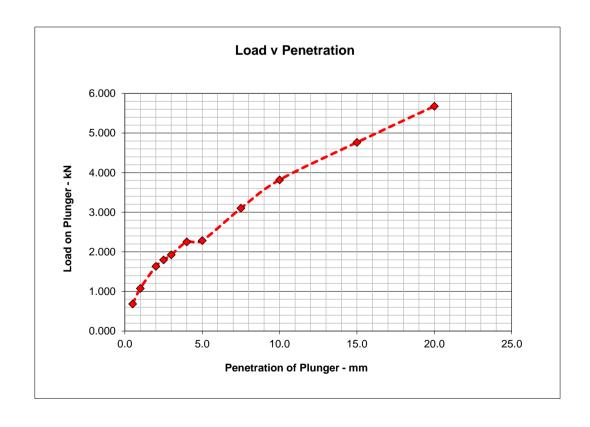


CBR1 Test 05/10/2020

Project Name	Cloghroe Housing Development	Date	17/09/20
Project No.	20-087	Operator	GOC
Test Location	CBR2	Depth	0.385m

Penetration (mm)	Standard load (kg)	l 2.5 = Load at 2.5mm penetration 1370	x100
2.5	1370		
5	2055	Load at 5mm penetration	x100
7.5	2630	2055	X100
10	3180		
12.5	3600		

Penetration (mm)	Load Reading (Divisions)	Load Reading (kN)	Standard Load (Kg)	Load (Kg)	CBR (%)
0.5	50.0	1.632		166	
1	55.0	1.795		183	
2	58.0	1.893		193	
2.5	60.0	1.958	1370	200	14.58
3	62.0	2.024		206	
4	64.0	2.089		213	
5	65.0	2.121	2055	216	10.53
7.5	69.0	2.252		230	
10	72.0	2.350		240	
15	75.0	2.448		250	
20	76.0	2.480		253	



CBR2 Test 05/10/2020

Project Name	Cloghroe Housing Development	Date	18/09/20
Project No.	20-087	Operator	GOC
Test Location	CBR3	Depth	0.385m

Penetration (mm)	Standard load (kg)	l 2.5 = Load at 2.5mm penetration 1370	x100
2.5	1370		
5	2055	Load at 5mm penetration	x100
7.5	2630	2055	X100
10	3180		
12.5	3600		

Penetration (mm)	Load Reading (Divisions)	Load Reading (kN)	Standard Load (Kg)	Load (Kg)	CBR (%)
0.5	21.0	0.685		70	
1	33.0	1.077		110	
2	50.0	1.632		166	
2.5	55.0	1.795	1370	183	13.36
3	59.0	1.926		196	
4	69.0	2.252		230	
5	70.0	2.285	2055	233	11.34
7.5	95.0	3.101		316	
10	117.0	3.819		389	
15	146.0	4.765		486	
20	174.0	5.679		579	

CBR3 Test 05/10/2020

APPENDIX G

HR Wallingford Greenfield Runoff Estimation

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Shane Moriarty
Site name:	Full Site
Site location:	Cloghoe SHD

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be

the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

 Latitude:
 51.92113° N

 Longitude:
 8.61907° W

Reference: 712845480

Date: Dec 10 2020 13:16

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

7.4

(1) Is $Q_{BAR} < 2.0 I/s/ha$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR
Calculate from SOIL type

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

	Detault	Eaitea
SOIL type:	2	2
HOST class:	N/A	N/A
SPR/SPRHOST:	0.3	0.3

Hydrological characteristics

Default Edited SAAR (mm): 1198 1198 Hydrological region: 13 13 Growth curve factor 1 year: 0.85 0.85 Growth curve factor 30 years: 1.65 1.65 Growth curve factor 100 years: 1.95 1.95 Growth curve factor 200 years: 2.15 2.15

(2) Are flow rates < 5.0 I/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Default	Edited
25.29	25.29
21.49	21.49
41.73	41.73
49.31	49.31
54.37	54.37
	25.29 21.49 41.73 49.31

Greenfield runoff rate

www.uksuds.com | Greenfield runoff tool

Calculated by:	Shane Moriarty	Site D
Site name:	AT-A	Latitud
Site location:	Cloghoe SHD	Longit

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

estimation for sites

Details

de: 51.92099° N tude: 8.61918° W

Reference: 2472807567

Date: Oct 27 2020 16:35

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

2.11

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR

Calculate from SOIL type

When Q_{BAR} is < 2.0 I/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

SOIL type: **HOST class:**

SPR/SPRHOST:

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Default	Edited	
2	2	
N/A	N/A	
0.3	0.3	

Default	Edited
1198	1198
13	13
0.85	0.85
1.65	1.65
4.05	4.05

1.95 1.95 2.15 2.15

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Q_{BAR} (I/s):

1 in 1 year (I/s):

1 in 30 years (I/s):

1 in 100 year (I/s):

1 in 200 years (I/s):

Default	Edited
7.21	7.21
6.13	6.13
11.9	11.9
14.06	14.06
15.5	15.5

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Shane Moriarty
Site name:	АТ-В
Site location:	Cloghoe SHD

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

Latitude: 51.92087° N Longitude: 8.61928° W

Reference: 245384712 Date: Dec 09 2020 12:24

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

1.23

(1) Is $Q_{BAR} < 2.0 I/s/ha$?

Methodology

SOIL type: **HOST class:**

SPR/SPRHOST:

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR Calculate from SOIL type

When Q_{BAR} is < 2.0 I/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

Default Edited N/A N/A 0.3 0.3

Hydrological characteristics

Default Edited SAAR (mm): 1198 1198 Hydrological region: 13 13 Growth curve factor 1 year: 0.85 0.85 Growth curve factor 30 years: 1.65 1.65 Growth curve factor 100 years: 1.95 1.95 Growth curve factor 200 years: 2.15 2.15

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Edited Default Q_{BAR} (I/s): 4.2 4.2 1 in 1 year (I/s): 3.57 3.57 1 in 30 years (**I**/s): 6.94 6.94 1 in 100 year (I/s): 8.2 8.2 1 in 200 years (I/s): 9.04 9.04

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Shane Moriarty	Site Details	
Site name:	AT-C	Latitude:	51.92130° N
Site location:	Cloghoe SHD	Longitude:	8.61906° W
Γhis is an estimation of	the greenfield runoff rates that are used to meet normal best		
	vith Environment Agency guidance "Rainfall runoff management 030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and	Reference:	599565295
he non-statutory stand	ards for SuDS (Defra, 2015). This information on greenfield runoff rates may	Date:	Dec 09 2020 12:21

the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation approach

IH124

Site characteristics

Notes

2.0 l/s/ha.

Total site area (ha):

1.098

(1) Is $Q_{BAR} < 2.0 I/s/ha$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR

Dofault

Calculate from SOIL type

Editod

Soil characteristics

	Delault	Luiteu
SOIL type:	2	2
HOST class:	N/A	N/A
SPR/SPRHOST:	0.3	0.3

Hydrological characteristics

, 3	Default	Edited
SAAR (mm):	1198	1198
Hydrological region:	13	13
Growth curve factor 1 year:	0.85	0.85
Growth curve factor 30 years:	1.65	1.65
Growth curve factor 100 years:	1.95	1.95
Growth curve factor 200 years:	2.15	2.15

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Greenied ranon rates	Default	Edited
Q _{BAR} (I/s):	3.75	3.75
1 in 1 year (I/s):	3.19	3.19
1 in 30 years (I/s):	6.19	6.19
1 in 100 year (I /s):	7.32	7.32
1 in 200 years (I /s):	8.07	8.07

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Shane Moriarty
Site name:	AT-D
Site location:	Cloghoe SHD

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be

the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

Latitude: 51.92130° N

Longitude: 8.61906° W

Reference: 285042199

Date: Dec 09 2020 12:21

Dec 09 2020 12:21

Runoff estimation approach

IH124

Site characteristics

0.8223

(1) Is $Q_{BAR} < 2.0 I/s/ha$?

Notes

2.0 l/s/ha.

Methodology

Total site area (ha):

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR
Calculate from SOIL type

Soil characteristics

	Default	Edited
SOIL type:	2	2
HOST class:	N/A	N/A
SPR/SPRHOST:	0.3	0.3

Hydrological characteristics

Default Edited SAAR (mm): 1198 1198 Hydrological region: 13 13 Growth curve factor 1 year: 0.85 0.85 Growth curve factor 30 years: 1.65 1.65 Growth curve factor 100 years: 1.95 1.95 Growth curve factor 200 years: 2.15 2.15

(2) Are flow rates < 5.0 I/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

When Q_{BAR} is < 2.0 I/s/ha then limiting discharge rates are set at

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

oreemeja runon rates	Default	Edited
Q _{BAR} (I/s):	2.81	2.81
1 in 1 year (I /s):	2.39	2.39
1 in 30 years (I /s):	4.64	4.64
1 in 100 year (I /s):	5.48	5.48
1 in 200 years (I/s):	6.04	6.04

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Shane Moriarty
Site name:	AT-E
Site location:	Cloghoe SHD

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be

the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

 Latitude:
 51.92130° N

 Longitude:
 8.61906° W

Reference: 3217272976

Date: Dec 09 2020 12:18

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

0.385

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR
Calculate from SOIL type

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

	Default	Edited
SOIL type:	2	2
HOST class:	N/A	N/A
SPR/SPRHOST:	0.3	0.3

Hydrological characteristics

Default Edited SAAR (mm): 1198 1198 Hydrological region: 13 13 Growth curve factor 1 year: 0.85 0.85 Growth curve factor 30 years: 1.65 1.65 Growth curve factor 100 years: 1.95 1.95 Growth curve factor 200 years: 2.15 2.15

(2) Are flow rates < 5.0 I/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Orecinicia ranon rates	Default	Edited
Q _{BAR} (I/s):	1.32	1.32
1 in 1 year (I/s):	1.12	1,12
1 in 30 years (I /s):	2.17	2.17
1 in 100 year (I /s):	2.57	2.57
1 in 200 years (I /s):	2.83	2.83

Greenfield runoff rate estimation for sites

Dec 09 2020 12:19

www.uksuds.com | Greenfield runoff tool

Calculated by:	Shane Moriarty	Site Details	
Site name:	AT-F	Latitude:	51.92130° N
Site location:	Cloghoe SHD	Longitude:	8.61906° W
	f the greenfield runoff rates that are used to meet normal best		
practice criteria in line with Environment Agency guidance "Rainfall runoff management or developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and		Reference:	1581708699

Notes

2.0 **l**/s/ha.

the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may Date:

the basis for setting consents for the drainage of surface water runoff from sites.

IH124

Site characteristics

0.465

Total site area (ha):

(1) Is $Q_{BAR} < 2.0 I/s/ha$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR Calculate from SOIL type

Soil characteristics

	Default	Edited
SOIL type:	2	2
HOST class:	N/A	N/A
SPR/SPRHOST:	0.3	0.3

Hydrological characteristics

Default Edited SAAR (mm): 1198 1198 Hydrological region: 13 13 Growth curve factor 1 year: 0.85 0.85 Growth curve factor 30 years: 1.65 1.65 Growth curve factor 100 years: 1.95 1.95 Growth curve factor 200 years: 2.15 2.15

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 I/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

orcement randi rates	Default	Edited
Q _{BAR} (I/s):	1.59	1.59
1 in 1 year (I /s):	1.35	1.35
1 in 30 years (I /s):	2.62	2.62
1 in 100 year (I /s):	3.1	3.1
1 in 200 years (I /s):	3.42	3.42